

ECP-2008-DILI-518001

BHL-Europe

Key components documented for output of D3.5
e.g. BHL-Europe Portal, OCR demonstrators,

distributed storage model, etc.

Deliverable number D3.7

Dissemination level Public

Delivery date 14 May 2011

Status Final

Author(s) TMB

eContentplus

This project is funded under the eContentplus programme1,
a multiannual Community programme to make digital content in Europe more accessible, usable and exploitable.

1 OJ L 79, 24.3.2005, p. 1.

D3.7 Key components documented for output of D3.5

 2/179

TABLE OF CONTENTS

1 DOCUMENT HISTORY.. 4

1.1 CONTRIBUTORS .. 4

1.2 REVISION HISTORY... 4

1.3 REVIEWERS AND APPROVALS ... 4

1.4 DISTRIBUTION... 5

2 PURPOSE AND DOCUMENT STRUCTURE... 6

2.1 OVERVIEW – THE BHL-EUROPE KEY COMPONENTS .. 6

3 INTERDEPENDENCIES BETWEEN KEY COMPONENTS ... 9

3.1 OAIS COMPONENT DEPLOYMENT .. 9

3.1.1 Execution Environments.. 9

3.1.2 Filetype.. 10

3.1.3 OAIS Components ... 10

4 KEY COMPONENTS... 11

4.1 PRE PRE-INGEST METADATA MAPPING TO OLEF... 11

4.2 PRE-INGEST .. 13

4.2.1 Workflow ... 14

4.2.1.1 Submission of Information Packages .. 14

4.2.1.2 Processing of submitted Information Packages ... 15

4.2.1.3 Preparation of Archival Information Package ... 16

4.2.2 Pre-Ingest in context of the OAIS function model ... 16

4.2.3 Data Harmonization.. 17

4.2.3.1 Pre-Ingest Tool .. 18

4.2.4 Metadata Enrichment.. 21

4.3 INGEST.. 23

4.4 ARCHIVAL STORAGE .. 25

4.4.1 The Fedora Digital Object .. 27

4.4.2 Islandora Content Model .. 27

4.4.3 Deployment ... 27

4.5 DATA MANAGEMENT.. 28

4.5.1 DEPLOYMENT ... 30

4.6 ACCESS... 30

4.7 PORTAL... 32

D3.7 Key components documented for output of D3.5

 3/179

4.7.1 Simple Search.. 33

4.7.2 Advanced Search... 34

4.7.3 Search Results View .. 37

4.7.4 Metadata View .. 38

4.7.5 User Profile Personalization... 39

4.7.6 Multi-lingual UI of the BHL-Europe Portal.. 43

4.7.7 Content View ... 47

4.7.8 Browse Index... 48

4.7.9 Drupal 7 .. 48

4.7.9.1 Modules... 49

4.7.9.2 Nodes .. 49

4.7.9.3 Fields... 49

4.7.9.4 Drupal API .. 49

4.7.9.5 Solr integration into Drupal 7.. 49

4.7.9.6 XML Stylesheets ... 50

4.8 GUID MINT/RESOLVER.. 50

5 THE INGESTION PROCESS FROM BHL-EUROPE TO EUROPEANA .. 51

5.1 THE EUROPEANA FIELDS... 52

5.2 EUROPEANA CONTENT CHECKING... 56

I ACRONYMS ... 59

II FIGURES ... 61

III APPENDICES ... 64

III.I PRE-INGEST FILE SUBMISSION GUIDELINES.. 64

III.II TECHNOTE: WEBDAV.. 74

III.III TECHNOTE: BHL-EUROPE GUID ... 82

III.IV TECHNOTE: DATAFLOW.. 88

III.V TECHNOTE: LOCKSS... 105

III.VI TECHNOTE: FEDORA-COMMONS... 114

III.VII TECHNOTE: ISLANDORA.. 155

1 Document History

This chapter describes the document’s creation events and contributors.

1.1 Contributors

This document is based on the meetings in Egypt, Berlin and Graz and ongoing progress and
outputs of the technical team with the following members contributing to this document.

Person Partner

Walter Koch, Bernd Sproger, Gerda Koch, Johannes Edelsbrunner AIT

Lee Namba ATOS

Chris Sleep, Lola Obajuluwa, Adrian Smales NHM

Wolfgang Koller NHMW

Henning Scholz MfN

1.2 Revision History

Revision Date Author Version Change Reference & Summary

25 April 2011 TMB 0.1 1st Component Draft

28 April 2011 TMB 0.2 Revised components assembled

29 April 2011 TMB 0.3 Components revised and updated

2 May 2011 TMB 0.4 Draft taking internal review into account

14 May 2011 TMB Final

1.3 Reviewers and Approvals

This document requires the following reviews and approvals. Signed approved forms are kept in the
project file.

Name Position Date Version

Adrian Smales / Graham Higley Work Package Leader 14 May 2011 Final

BHL-Europe Tech Group TMB 0.4

Henning Scholz Project Co-ordinator 0.4

D3.7 Key components documented for output of D3.5

 5/179

1.4 Distribution

This document has been distributed to:

Group Date of issue Version

BHL-Europe Tech Group 28 April 2011 0.2

BHL-Europe Tech Group 29 April 2011 0.3

BHL-Europe Tech Group 2 May 2011 0.4

BHL-Europe consortium 4 May 2011 0.4

BHL-Europe Tech Group 16 May 2011 Final

Project Co-Ordinator 16 May 2011 Final

D3.7 Key components documented for output of D3.5

 6/179

2 Purpose and document structure

This aim of this document is to describe the technical architecture, workflows and
interdependencies for the Key Components identified in deliverable D3.5 (Technical
architecture status and progress report with particular focus on the development of the
German prototype) with specific implementation details for the components deployed to date.

Chapter 4 of the document structure reflects the structure of D3.4/D3.5 covering the
component implementation and process/data flows. It is followed by a chapter describing the
current ingestion process from BHL-Europe to Europeana, achieved for the data sets ingested
during April 2011.

Overall this document will cover the current technical architecture status in terms of where
our technology stands so far in the Implementation Phase.

The final development will be delivered in D3.9

2.1 Overview – The BHL-Europe Key Components

BHL-Europe Technical Architecture

 Pre-Ingest

 Ingest

 Archival Storage

 Data Management

 Access

 Portal

The BHL-Europe data workflow is based on systems to separate roles and responsibilities and
to effectively manage the data. The outcome of every individual system is feeding the Pre-
Ingest module of the BHL-Europe system. The Pre-Ingest module thus collects all the data
produced in these systems and prepares the SIP to be ingested into BHL-Europe. Among
these systems are the scanning system and the mapping system (called schema mapping in the
architecture). The scanning system on the content provider side will provide the page images.
The mapping system will provide the metadata mapped to the OLEF (Open Literature
Exchange Format). No metadata other than data in the OLEF schema is allowed to enter the
Pre-Ingest module. It is of special importance that the archived information can reconstruct
exactly the same output OLEF as the one which was submitted to the Pre-Ingest module.

BHL-Europe is offering the metadata mapping to the OLEF schema as a service for all
content providers (for details on this process see section 4.1 below). This does not disengage
content providers to be responsible for the quality of their metadata, as we don’t have the
resources to fix all quality issues. To start the process, every content provider is uploading
metadata and scans via FTPS to the NHM servers in London.

Content Providers first upload test content to the NHM server including the scanned images
and the corresponding metadata according to the file submission guidelines. The test content

D3.7 Key components documented for output of D3.5

 7/179

will then be checked on the one hand by AIT and on the other hand by NHMW. AIT verifies
if the file submission guidelines have been followed and NHMW will start with the data
mapping to the OLEF schema creating a configuration for every content provider to
accommodate for the characteristics of the content provider data. The mapping configuration
is defined for every content provider individually once and will remain the same as long as
the content provider does not change the structure of the provided metadata. However,
standard mappings (for e.g. MARC21, DC) are available and only partners with non-standard
data need more work to map the data properly. According to our preliminary analysis, this is
only true for a low number of partners. The mapping process is accompanied by a QA process
to negotiate and verify the result of the mappings in collaboration with the content providers.
After quality is approved, the content provider can upload the bulk of the material to be
ingested into the BHL-Europe system. Once the upload is finished, the content provider log
into the Pre-Ingest module to trigger the conversion of all metadata into the OLEF schema
based on the previously defined configuration. NHMW provides the command to convert the
metadata for each content provider which is then executed by the Pre-Ingest module. The
content provider then selects the folder(s) for procession via the Pre-Ingest interface. The data
handling in the Pre-Ingest module will be managed by AIT.

In case content providers have the expertise and resources to work on the mapping
configuration themselves, we can offer this options and provide all the necessary tools for the
content providers. The Schema Mapping Tool is open source and documentation will be
available before the end of the project. This also is a sustainable solution to distribute the
responsibility and offer future content providers tools to map their data to our data schema
after the end of the project.

Figure 2-1: SIP Preparation Workflow

The Schema Mapping Tool is also able to deal with enriched metadata of our content
providers and include this information in the OLEF schema. Manual data enrichment ideally
happens at time of scanning and during quality control on the content provider side. This may
include taxonomic information in high quality. It needs to be investigated, if workflow
management tools like Goobi are able to support the data enrichment procedure.

If one content provider, for example, is able to provide good quality taxonomic metadata for
the page images or scans, BHL-Europe is able to use these data to facilitate search and
retrieval of these items. In any case an automatic enrichment of the metadata will be done

D3.7 Key components documented for output of D3.5

 8/179

during Pre-Ingest using live Web-Services. Pre-processing of the data is required to facilitate
the automatic data enrichment. OCR is necessary, for example, to apply the TaxonFinder and
identify taxon names in the documents provided to BHL-Europe. Within the Pre-Ingest
module, METS files are generated as a transport container (encapsulating the OLEF metadata)
for Fedora. Also the mapping to the Europeana schema (ESE, EDM) is part of the Pre-Ingest
and is done by AIT. For more details on the Pre-Ingest component, please see section 4.2
below.

D3.7 Key components documented for output of D3.5

 9/179

3 Interdependencies between Key Components

Figure 3-1: BHL-Europe Architecture Diagram

3.1 OAIS Component Deployment

BHL-Europe uses virtualization technology from VMWare whereby larger physical servers
are used in place of many small physical servers to increase the utilization of costly hardware
resources such as CPU. New virtual machines can be provisioned as needed for scalability or
redundancy needs. In order to reduce configuration and maintenance efforts all software
specific to an OAIS component is installed on the shared network working storage. This
storage is organized by execution environments, filetype, and OAIS components.

3.1.1 Execution Environments

In order to maintain a stable system capable of evolving in the future several execution
environments are needed. At a minimum development and production environments are
required to have a stable system in production and a development system for bug fixes,
feature development and testing.

Execution Environment Path to Environment

Development /mnt/nfs-demeter/dev

Staging /mnt/nfs-demeter/stage

Production /mnt/nfs-demeter/prod

D3.7 Key components documented for output of D3.5

 10/179

3.1.2 Filetype

On order to optimize the performance and maintainability of the BHL-Europe system the
files are separated into three types based on typical best practices of Linux systems:

 Software engines

 Data files of software engines

 Log files of software engines

Using the production environment as an example this gives the following:

Type of File Path to Filetype

Software engine /mnt/nfs-demeter/prod/opt

Data /mnt/nfs-demeter/prod/data

Logs /mnt/nfs-demeter/prod/logs

3.1.3 OAIS Components

To keep the BHL-Europe system modular the OAIS components are separated as well. Using
the production environment and the software engines as examples this gives the following:

OAIS Component Path to OAIS Software Components

Pre-ingest /mnt/nfs-demeter/prod/opt/pre-ingest

Ingest /mnt/nfs-demeter/prod/opt/ingest

Archival Storage /mnt/nfs-demeter/prod/opt/archival-storage

… …

D3.7 Key components documented for output of D3.5

 11/179

4 Key Components

4.1 Metadata mapping to OLEF

As content providers use different metadata for their exports it was necessary to introduce an
additional processing step for harmonizing the metadata. In order to provide a common input
format to all further processing steps it was decided to use OLEF (Open Literature Exchange
Format). The format will be explained more in detail later on.

Figure 4-1: Metadata Mapping to OLEF

As outlined in Figure 4-1 all incoming metadata will be pre-processed using the SMT
(Schema Mapping Tool). The SMT has several built in conversion templates for processing
standard input formats (like MARC21, DC, MODS, etc.). Some content providers may
provide their metadata using a special format. Therefore the SMT is also able to process
custom mappings which can be pre-defined using a graphical user interface.

The metadata mapping to OLEF is a preparation phase for the Pre-Ingest module which
however is directly invoked by the Pre-Ingest itself. The conversion of the metadata can be
actively triggered by the Content Provider itself when accessing the Pre-Ingest interface.
Therefore the metadata mapping to OLEF is more a conceptual step than a physically
separated process.

As a first step we defined our requirements involving all of our content providers. In order to
allow communication between all of our partners we started a Google group (BHLE-
Metadata) which primary task it was to create a simple list of requirements for our metadata
including a comparison to existing standards. During the gathering of the requirements for the
metadata it was discovered that no existing standard can fulfill all desired requirements on its
own. Therefore we decided to create an own schema which encapsulates several domain
specific standards into a single exchange and storage format which satisfies all of our
requirements.

D3.7 Key components documented for output of D3.5

 12/179

Figure 4-2: Schematic outline of OLEF structure

As shown in Figure 4-2 the OLEF schema uses a simple yet effective approach for storing
literature related metadata in a single file. The main problem for all existing standards is the
lack of ability to store metadata at any given level within the hierarchy of a publication. The
OLEF schema tackles that limitation by introducing a recursive element (called “element” and
“subElement” in Figure 4-2) which is able to reference itself within the same structure. Using
that technique it is now possible to store metadata at any given level of information
(monographs, serials, articles, pages, etc). Even only parts of a publication can be exchanged
as the OLEF schema offers fields for storing and referencing GUIDs which are used for each
item within the BHL-Europe architecture.

As mentioned above the OLEF schema incorporates several other standards and creates a
relation between them. The standards used are:

 MODS2 – bibliographic metadata (author, title, publication date, etc.)

 MIX3 – Image (scans) metadata (resolution, size, acquisition device, etc.)

 ODRL4 – IPR information

 DWC5 – Taxon Name information

2 Metadata Object Description Schema: http://www.loc.gov/standards/mods/
3 Metadata for Images in XML Schema: http://www.loc.gov/standards/mix/
4 Open Digital Rights Language: http://odrl.net/

D3.7 Key components documented for output of D3.5

 13/179

The combination of those standards has proven to satisfy all of our requirements. As of OLEF
version 0.3, a stable namespace for the schema has been established using the BHL-Europe
Web site. The current version of the schema can be found at http://www.bhl-europe.eu/bhl-
schema/v0.3/ (which is equal to the namespace).

The conversion process is already established at the servers provided by NHM London and is
actively tested using the first uploads by our content providers. The integration into the Pre-
Ingest module workflow is outlined in the next chapter.

4.2 Pre-Ingest

The Pre-Ingest component is a set of processing steps and processing systems which are
orchestrated to facilitate data submission, data harmonization, data enrichment. This also
involves communication and feedback loops with data providers and developers. Further
documentation of this key component is referring to a workflow diagram which has been
modeled based upon analysis of the required processing steps and capabilities of the used
processing systems. “This component is the interface to the archives and acts as an adapter for
the Ingest module. As external partners store meta data in various formats, the native formats
need to be converted, harmonized, enriched and prepared for ingestion. This step is needed for
the ingestion, multilingual search, data harmonization, indexation and search requirement.”
[D3.4, p.18]

Figure 4-3: Pre-Ingest process as documented in Deliverable 3.4

The Pre-Ingest process as documented in D3.4 has been more precisely formulated by
creating a Pre-Ingest workflow model.

5 Darwin Core: http://rs.tdwg.org/dwc/

D3.7 Key components documented for output of D3.5

 14/179

4.2.1 Workflow

The Pre-Ingest workflow6 describes the necessary interaction steps to create an Archival
Information Package (AIP) from a Submission Information Package (SIP). We have carefully
investigated other best-practice approaches on how to setup a Pre-Ingest workflow. Pre-Ingest
development is based on the works of Archivematica and the California Digital Library
(CDL). CDL develops micro-services for several functionalities needed during Pre-Ingest.
Also Archivematica developed an OAIS-based archival process during which different tools
and micro-services are used. We compared both approaches and isolated important micro-
services which are relevant for Pre-Ingest (see Figure 4-4). The resulting workflow model can
be seen as a best-practice based approach of how a Pre-Ingest process generally could work.

Figure 4-4: Comparison of Merritt vs. Archivematica micro-services for Pre-Ingest.

The workflow model follows the BPMN 2.0 notation and has been created using Eclipse-
based toolsets. The pool is divided into swim lanes each covering an actor’s role during Pre-
Ingest, i.e. Producer, OAIS Activity, Archivist, Archivematica micro-services. Each process is
described by a corresponding use case. The Archivematica Use Cases are well documented
and most important guidelines for the implementation of the Pre-Ingest tool. The micro-
services are used to implement required functionality such as the minting of a unique
identifier, virus scanning, executing scripts, launching the transformer.

4.2.1.1 Submission of Information Packages

The notification contains information about the structure of to-be submitted content and
metadata. Producers (often referred to as ‘content providers’ in the BHL-Europe context)
inform the Archivists about their intent to submit information packages. In the following steps
the Archivist validates that the structure of the submitted content is OK and informs the
producer about the outcome. Producers submit information packages by uploading their
content and metadata to the NHM servers. Pre-Ingest provides the necessary means to

6 We needed to include the workflow diagram in two parts so that all steps are visible and readable.

D3.7 Key components documented for output of D3.5

 15/179

producers to be able to submit SIPs: Pre-Ingest File Submission Guidelines, access to the
storage cluster by SFTP and WebDAV. Technical notes (see Appendix III.II) have been
created for both functionalities and provided to the relevant target groups. The technical notes
are attached to this document for further reading.

Figure 4-5: Pre-Ingest Workflow showing pool with swim lanes / part 1.

4.2.1.2 Processing of submitted Information Packages

Producers can’t always follow the Pre-Ingest File Submission Guidelines as close as 100%.
Some producers already started creating their content and metadata before the guidelines have
been published and don’t have the resources to adapt their data to the guidelines. Pre-
processing of submitted data is required to make it even possible to work with it. Data
harmonization during Pre-Ingest is one of the most time and resource consuming work
therefore, but necessary. The required processing steps closely follow the Archivematica
micro-services, i.e. extracting the package information, assigning identifiers, calculating file
hash sums, checking for viruses, identification of package contents (titles, items), extraction
of technical metadata, optical character recognition, semantic data enrichment.

D3.7 Key components documented for output of D3.5

 16/179

Figure 4-6: Pre-Ingest Workflow showing pool with swimlanes / part 2.

4.2.1.3 Preparation of Archival Information Package

The AIP is prepared for ingest at the end of the Pre-Ingest workflow. The generated METS
file including all submitted and generated metadata and contents are moved onto the NFS
storage for directory ingest.

4.2.2 Pre-Ingest in context of the OAIS function model

The Pre-Ingest component isn’t part of the official ‘blue book’ OAIS standard7, but a well
sought-after component in most archival systems. Examples include Apache OODT which is
developed by NASA, or The Fascinator 2 which is developed by the University of Southern
Queensland. Pre-Ingest is necessary to implement functionalities such as data harmonization
which are missing in the official OAIS standard. Pre-Ingest happens right before Ingest but
also covers aspects of Ingest. This is important to point out since also parts of this component
description will refer to functionalities seen and covered usually during ingest (see Figure 4-7,
Figure 4-8).

7 http://nssdc.gsfc.nasa.gov/nost/isoas/ref_model.html

D3.7 Key components documented for output of D3.5

 17/179

Figure 4-7: OAIS function model showing the location of Pre-Ingest.

The OAIS function model foresees SIPs to be ingested into the Ingest component. Pre-Ingest
extends Ingest by functionalities to prepare SIPs and to successfully transform SIPs into AIPs.
These AIPs are ingested into the Archival Storage system unchanged.

Figure 4-8: OAIS functions of ingest showing which areas are also partly covered by the Pre-Ingest
component.

4.2.3 Data Harmonization

It is necessary to transform submitted information packages into a common structure so that
further processing can happen. Since content providers submit very differently structured SIPs
it’s important to harmonize the content and metadata. We are using METS as a container
format for transporting the different metadata formats and linking them to the content, i.e. the
files. The Pre-Ingest Tool is developed to facilitate this process. Various requirements need to
be fulfilled so that data can be automatically harmonized. Content providers should adhere to
the Pre-Ingest File Submission Guidelines (see Appendix III.I) as closely as they can. Any

D3.7 Key components documented for output of D3.5

 18/179

exceptions need to be manually handled, and additional preprocessing steps are necessary to
transform SIPs so that they can be handled by the Pre-Ingest Tool.

Metadata mapping is also a part of data harmonization. Bibliographic metadata of content
providers has been mapped to MODS inside of OLEF. Metadata mapping has been discussed
based upon the documentation of the metadata data flow in the German prototype (see
Appendix III.IV). A metadata gateway has been introduced as conclusion, so that metadata
mapping happens before Pre-Ingest inside of the BHL-Europe architecture.

4.2.3.1 Pre-Ingest Tool

The tool facilitates the generation and control of submitted content and metadata. The
deployment diagram for Pre-Ingest shows the various components which are deployed and
used to facilitate incoming data (see Figure 4-11). It’s actually comprised of three different
components:

 Web-application for user interaction, extraction and transformation of information
packages, integration with external and custom developed web-services and micro-
services

 SFTP / WebDAV access to the BHL-Europe storage

 Scripting environment to implement individual processing steps

Figure 4-9: Web application for the Pre-Ingest Tool. Submitted directories can be selected for further
processing.

The web application looks into each content provider’s data and starts the data harmonization
process for selected directories. The tool integrates various web services which have been
built to interface different micro-services as specified in the workflow, i.e. schema mapping
tool, ClamAV8 anti-virus daemon, NOID minter9. It was developed using a best-practice
approach for implementing loosely coupled, highly available, well performing, scalable web

8 http://www.clamav.net/lang/en/
9 http://search.cpan.org/dist/Noid/, also see Appendix III.III about BHL-Europe GUID which is based on the

NOID minter adaptor.

D3.7 Key components documented for output of D3.5

 19/179

applications. Therefore we decided to use parts of the Java Spring framework10. The Spring
Integration11 framework is used on top of it to implement the necessary messaging system to
pass digital objects (scans, metadata, …) from one processing step to the next (see Figure
4-10). Digital Objects are passed from one channel to the next and service activators in
between operate on the data objects which are passing through.

10 http://www.springsource.com/
11 http://www.springsource.org/spring-integration

Figure 4-10: Visualization of different messaging channels and service activators (such as loading-ramp, security-check, boxing, create-aip, …) of Pre-Ingest Tool. Starting
from loading gateway in the upper left until create-aip in the lower right.

D3.7 Key components documented for output of D3.5

 21/179

«device»
:Producer Machine

«device»
bhl-mandible.nhm.ac.uk : Linux Virtual Machine

:Browser

:FTP Client

http

«ftp service»
:FTP Server

ftp

«J2EE container»
:Application Server

«web app»
preingesttool.war

«webservice»
identity.aar

transformation.aar
fixity.aar

annotation.aar
characterization.aar

«python env»

«script»
quarantineSIP.py

«script»
receiveSIP.py

«script»
reviewSIP.py

«script»
appraiseSIP.py

«script»
prepareAIP.py

Figure 4-11: Deployment diagram of the Pre-Ingest tool.

It is important to point out that the web application handles any transformation and extraction
of content and metadata and marshals them together into METS.

The different scripts in the scripting environment are necessary to cover the individual
preprocessing. We decided to implement the preprocessing using dynamic scripting languages
which significantly speeds up development and can be easily adapted. We are also using
various adapted scripts to process content and metadata to preview AIPs. We use these
previews of items to ingest content into Europeana as long as the BHL-Europe archive isn’t
yet finished.

The FTP server has been integrated as an FTPS server due to security regulations at NHM
London’s site. It proved difficult for several content providers to upload data using FTPS due
to firewall issues with the specific protocol. Therefore a WebDAV server has been configured
on top of Apache using mod_dav.

The source code has been checked into the bhl-bits repository on Google code12, and should
provide the ideal basis for further development and continuous development, improvement,
integration.

4.2.4 Metadata Enrichment

Pre-Ingest also covers necessary data enrichment which is stored inside of METS following
the BHL-Europe Schema OLEF (Open Library Exchange Format, as defined by NHM

12 http://code.google.com/p/bhl-bits/source/browse/#svn%2Ftrunk%2Fbhl-e%2Fpre-ingest

D3.7 Key components documented for output of D3.5

 22/179

Vienna). We are using JHOVE13 1.6 to extract technical metadata from the images and also
store them inside METS. This is an important step to have standard conformant metadata for
preservation purposes. The most important step is the optical character recognition (OCR) of
scanned pages. This is the basis for any further taxonomic intelligence processing since we
are adding all text and all identified taxa to the Metadata. OCR is implemented using the
software tesseract14 which leaves room for improvement. Since autumn 2010 tesseract is
available as version 3.00 and supports new ways of customizing character recognition. First
tests with BHL-Europe scanned images show good results and therefore version 3.00 is
integrated into the BHL-Europe Pre-Ingest workflow. Experimental support for hOCR15 is
also built into tesseract 3.00 which outputs text including all words’ bounding boxes.
Therefore a straight-forward integration with IA BookReader’s full-text search seams
possible. Other options have been ruled out due to the high cost they are associated with (i.e.
ABBYY16). Taxon finder and uBio webservices are used to extract taxa out of the OCRed
text.

BHL-Europe is not only interested in just implementing existing OCR technologies but also
to improve these technologies. OCR errors are a major problem for taxonomic intelligence
technologies as the data for enrichment are based on the OCR text of digitised page images.
Thus, improving OCR will improve the name finding and subsequently the search for
taxonomic information in the digital biodiversity heritage literature. The improvement of
OCR technologies is really a challenge for BHL-Europe, being only one task among many
other tasks. Therefore, we are collaborating with the EU-funded IMPACT project (Improving
Access to Text). Recently we agreed to be involved in the test of the applications and
services developed within the IMPACT project. A test set is in progress to be submitted to
IMPACT. Testing and evaluation will happen over the summer. The goal of this collaboration
is to find out to what extent the IMPACT approach can help to improve the OCR of BHL-
Europe content.

It’s important to point out that web services from VIAF and Species2000 aren’t used for
metadata enrichment, but are used for search term amplification at the Portal. In case
metadata enrichment with Species2000 is required, Pre-Ingest can easily be adapted to
interface with the Species2000 web service.

We are using Pentaho Kettle17 and XSL-based technologies to facilitate the enrichment (see
Figure 4-12) of data during the Pre-Ingest Workflow. Pentaho Kettle is an Open-Source state-
of-the-art ETL (Extract, Transform, Load) Tool.

13 http://hul.harvard.edu/jhove/
14 http://code.google.com/p/tesseract-ocr/
15 https://docs.google.com/View?docid=dfxcv4vc_67g844kf
16 http://www.abbyy.de/
17 http://kettle.pentaho.com/

D3.7 Key components documented for output of D3.5

 23/179

Figure 4-12: Pentaho Kettle transformation from Excel to XML using multiple enrichment steps in

between.

4.3 Ingest

“This component provides the services and functions to accept Submission Information
Packages (SIPs) from the PreIngest module or Producers directly (or from internal elements
under Administration control) and prepares the contents for storage and management within
the archive. Ingest functions include receiving SIPs, performing quality assurance on SIPs,
generating an Archival Information Package (AIP) which complies with the archive’s data
formatting and documentation standards, extracting Descriptive Information from the AIPs
for inclusion in the archive database, and coordinating updates to Archival Storage and Data
Management.” [D3.4, p.25]

D3.7 Key components documented for output of D3.5

 24/179

«device»
bhl-mandible.nhm.ac.uk : Linux Virtual Machine

«J2EE container»
:Application Server

«web app»
diringest.war

«script»
ingest.sh

Pre-Ingest

Archival
Storage

Figure 4-13: Deployment diagram of Ingest component showing the script used for batch ingest of AIPs
and the web application Directory Ingest Service (in the context of Fedora Commons).

The output from Pre-Ingest is an AIP which is ready to be ingested into the Archival Storage
system (see Figure 4-6, step “prepare AIP transfer”). This transfer is the only process covered
by the Ingest component (see Figure 4-14, Figure 4-13). All required steps to generate AIPs
have been covered during the Pre-Ingest workflow (see Figure 4-8).

Figure 4-14: The ingest component covers the process required to ingest AIPs into the Archival storage
system.

The coordination of updates as seen in Figure 4-14 happens by the means of an ingest script.
This also means that the implementation of this specific OAIS functionality is done based on
the requirements of the Archival Storage system. Fedora Commons is used for Archival
purposes and therefore the script used to ingest AIPs into Fedora Commons is based on the
directory ingest scripts already available. The scripts are adapted to facilitate putting AIPs
into Fedora Commons. The binding element between the Pre-Ingest, Ingest, Archival Storage
components is the minted identifier during the Pre-Ingest workflow. The ingest mustn’t be a
one way dataflow – AIPs must also be able to be transferred back into the Ingest component
in case further processing is needed before ingestion. Therefore this script also makes it

D3.7 Key components documented for output of D3.5

 25/179

possible to simply request and download data from Archival Storage based upon the
identifiers. This identifier would also be compatible with LOCKSS which has been
investigated to create the distributed storage of the archive (see Appendix III.V).

The ingest architecture as envisioned in D3.4 needs to be reasonably scaled down for the
above described processes since no other logic is really necessary in the context of BHL-
Europe. All interaction happens based on access to the NFS share which holds the content
provider’s submission. Pre-Ingest provides AIPs by copying them over to the NFS share, each
directory is named after the minted identifier, and waiting to be pulled into Archival Storage
by the directory ingest script. This delivers the same functionality as described in Figure 4-15,
but proves to be vastly simplified and therefore more flexible and easier to deliver.
Automated communication with Administration and Data Management components has been
moved over to Archival Storage since Fedora Commons provides the ideal utilities for these
OAIS functionalities partially out of the box.

Figure 4-15: Ingest architecture as documented in Deliverable 3.4.

4.4 Archival Storage

This component provides the services and functions for the storage, maintenance and retrieval
of AIPs. The work on Archival Storage is mainly composed of the installation, configuration,
and integration of the open source components Tomcat, MySQL, and Fedora Commons with
the infrastructure of BHL-Europe housed at the Natural History Museum, London. As such
documentation of Fedora Commons is provided as an appendix.

D3.7 Key components documented for output of D3.5

 26/179

The differences between the current version and D3.4 are:

 The SWORD interface and plugin for Fedora is not used. At this point the added
value of providing a SWORD interface is not known and thus does not seem worth
implementing currently. A SWORD interface can always be added in parallel at a
future date if the requirement arises.

 The MySQL database is used instead of Postgresql. The majority of the development
team members were already familiar with MySQL thus making development faster.

 A small custom extension of the underlying lowlevel storage based on Akubra module
has been written to accommodate the different types of storage mainly short term(disk
based) and long term(disk and tape based).

The following diagram shows the main software modules used to implement Archival
Storage.

Figure 4-16: Archival Storage Architecture

D3.7 Key components documented for output of D3.5

 27/179

4.4.1 The Fedora Digital Object

Fedora defines a generic digital object model that can be used to persist and deliver the
essential characteristics for many kinds of digital content including documents, images,
electronic books, multi-media learning objects, datasets, metadata and many others. This
digital object model is a fundamental building block of the Content Model Architecture and
all other Fedora-provided functionality. The basic components of each digital object are:

 PID: A persistent, unique identifier for the object.
 Object Properties: A set of system-defined descriptive properties that are necessary to

manage and track the object in the repository.
 DataStream(s): The element in a Fedora digital object that represents a content item.

There are four distinct types of Fedora digital objects that can be stored in a Fedora
repository. The distinction between these four types is fundamental to how the Fedora
repository system works.

 Data Object: used to store digital content entities
 Service Definition Object: used to store service descriptions
 Service Deployment Object: used to deploy services
 Content Model Object: objects used to organize other objects

4.4.2 Islandora Content Model

For BHL-Europe we use the “Islandora content model” to determine which mime-types can
be ingested and how the object will be managed on ingest.

The Islandora Content Model extends the Fedora Content Model Architecture (CMA).
Specifically we use the “bookCModel” and the “pageCModel”. These two objects are
provided by the Island Lives drupal module (Islandora Book) and can be ingested via the
drupal admin interface.

Each digital object using the bookCModel or pageCModel will represent a book or a page. So
it is easier to create relations between a book and its pages.

4.4.3 Deployment

The following diagram shows the deployment diagram for Archival Storage.

D3.7 Key components documented for output of D3.5

 28/179

Figure 4-17: Archival Storage Deployment Diagram

4.5 Data Management

Data Management provides services and functions for populating, maintaining, and accessing
Descriptive Information which identifies and documents archive holdings and administrative
data used to manage the archive. The work on Data Management is mainly composed of the
installation, configuration, and integration of the open source components Apache, Drupal 7,
Islandora Drupal Module, MySQL, and Fedora Commons with the infrastructure of BHL-
Europe housed at the Natural History Museum, London. As such documentation of Islandora
is provided as an appendix.

The differences between the current version and D3.4 are:

 The addition of Islandora to provide an graphical user interface to the Fedora
repository instead of custom PHP code. Fedora provides a user interface, however,
the usage is for advanced users such as developers and not necessarily functional
administrators such as librarians or scientists. To fulfill this simpler UI requirement
Islandora (http://islandora.ca) was evaluated and chosen. Islandora is deployed as a
module to Drupal. In order to maintain loose coupling and independence between
OAIS components a separate Drupal instance will be used for Data Management from
the Portal.

 The “search” functionality was only required in the Portal and thus was moved from
the Data Management component to the Portal component. The impact to Data
Management is that the Solr search engine is no longer needed.

 The MySQL database is used instead of Postgresql. The majority of the development
team members were already familiar with MySQL thus making development faster.

The following diagram shows the main software modules used to implement Data
Management.

D3.7 Key components documented for output of D3.5

 29/179

Figure 4-18: Data Management Architecture

D3.7 Key components documented for output of D3.5

 30/179

4.5.1 Deployment

The following diagram shows the deployment diagram for Data Management.

Figure 4-19: Data Management Deployment Diagram

4.6 Access

“This component provides the services and functions that support Consumers in determining
the existence, description, location and availability of information stored in the OAIS, and
allowing Consumers to request and receive information products. Access functions include
communicating with Consumers to receive requests, applying controls to limit access to
specially protected information, coordinating the execution of requests to successful
completion, generating responses (Dissemination Information Packages, result sets, reports)
and delivering the responses to Consumers.” [D3.4, p.p. 49-50]

D3.7 Key components documented for output of D3.5

 31/179

«Virtual Machine»

bhl-mandible.nhm.ac.uk

«executionEnvironment»

:Drupal 7 CMS
«executionEnvironment»

:Pentaho Kettle

«component»

Cache

«component»

OAI-PMH

«component»

Transform
Metadata to ESE

«web service»

Ontology Services
Archival
Storage

Europeana

Figure 4-20: Deployment diagram of Access component.

The Access component (see Figure 4-20) has access to the Archival Storage component and
might be understood as the simplified counterpart of the Ingest component. Whereas Ingest is
responsible to put AIPs into the Archival Storage system, Access pulls them out of the
Archival Storage system and pushes them into the Drupal portal. Thus the Access component
transforms an AIP into a DIP (Dissemination Information Packages), and makes the content
and metadata available for and on the Portal. A DIP is not only a visible BHL-Europe content
node on side of the portal, but also ESE transformed MODS (coming out of OLEF),
especially created for Europeana. Again this process has been elegantly simplified and needs
no attachment to other OAIS functionalities. A script is pulling data out of Fedora Commons
using the well- documented HTTP interface and pushes metadata onto the Drupal portal (see
4.7.9 Drupal). The system-wide identifiers are used to have a unique reference between
Access and Archival Storage.

Figure 4-21: Access processes covered in the context of BHL-Europe.

D3.7 Key components documented for output of D3.5

 32/179

The OAIS Access component has been adapted to the needs of the project and further toned.
Specifically the communication with Data Management and Administration components has
been moved over to the Archival Storage system. Of course the main functionalities remain
the same. Data is being transformed by Pentaho Kettle jobs into ESE, stored in the Portal, and
an OAI-PMH provider delivers the transformed ESE data to Europeana. The DIP cache has
been moved over to the Portal where Drupal nodes are created which hold the metadata and
unique identifiers.

Figure 4-22: Access Architecture as planned in D3.4.

4.7 Portal

The BHL-Europe portal is developed based on the German prototype which has been
demonstrated for D3.6. Functionality is ported to Drupal 7 modules (see Figure 4-23) which
provide an ideal basis for further development. Core features have been identified and
extracted out of the ‘Description of Work’ (DoW):

Feature Categories Description

Simple Search...............................Describes how a simple Boolean search is initiated

Advanced Search..........................Describes how a more complex search is initiated

Browse Index................................Describes by what navigational means content is browsed

D3.7 Key components documented for output of D3.5

 33/179

User Profile PersonalisationDescribes personalisation options for registered users

Search Results View.....................Describes how search results are displayed

Metadata ViewDescribes how metadata about titles/items is displayed

Content View................................Describes how content (such as scanned images) is
displayed

Multilingual UI.............................Describes that the portal needs to support multiple

languages

«Virtual Machine»

bhl-mandible.nhm.ac.uk

«executionEnvironment»

:Drupal 7 CMS

«web service»

Ontology Services

Access

«component»

Metadata Node

Core Features

«component»

Simple Search

«component»

Advanced Search

«component»

Results View

«component»

Metadata View

«component»

Content View

«component»

Browse Index

«component»

Personalization
«component»

Multilingual UI

«executionEnvironment»

:Tomcat 6.0

Solr

«component»

Core 1

«component»

Core 0

Figure 4-23: Deployment diagram showing Drupal 7 modules as components (core features and metadata
node). Ontology services are used for taxonomic enrichment.

4.7.1 Simple Search

Simple Search provides the possibility to access basic search functionality with a single
search field, that can be displayed on several positions of the portal. An auto-complete
function helps users when entering a search term. The implementation of the simple search is
based upon the Apache Solr Integration module18. This module indexes all contents of the
portal system on a timely basis. Thus there are separate Solr cores (i.e. an index database) for
simple search and advanced search.

18 http://drupal.org/project/apachesolr

D3.7 Key components documented for output of D3.5

 34/179

Figure 4-24: Simple search screenshot from current development version.

4.7.2 Advanced Search

The advanced search offers additional search adjustments. Various search masks are
implemented. All development is based on the Drupal 7 (Forms) API, so interface design can
happen independently from delivering core features and functionality. The core for advanced
search is created manually based on the relevant fields contained in the metadata. Therefore
it’s possible to search for results while combining different search queries for different
indexed metadata fields.

The first implementation of an advanced search mask is developed based upon the example of
the Europeana advanced search mask where search fields can be specified and additional
parameters can be added when needed. We decided to follow these examples since they are
already used by users and represent a de-facto standard for advanced search query forms (see
Figure 4-25, Figure 4-26). The second implementation of an advanced search mask is
developed based upon the example of the Google advanced search mask. It enables users to
make queries in the categories ‘with all words’, ‘with exact phrase’, ‘with any word’ and
‘without words’ (see Figure 4-27, Figure 4-28). The most flexible search is the advanced
search, where users can use logical operators and other reserved words and parameters to
specify the search query directly (see Figure 4-29).

D3.7 Key components documented for output of D3.5

 35/179

Figure 4-25: Advanced search from current development version. Multiple fields can be select.

Figure 4-26: Advanced search example as seen on Europeana.

D3.7 Key components documented for output of D3.5

 36/179

Figure 4-27: Advanced search (Google-like) from current development version.

Figure 4-28: Advanced search as seen on www.google.com.

D3.7 Key components documented for output of D3.5

 37/179

Figure 4-29: Advanced search screenshot from current development version. Search syntax can be
manually entered and thus provides an optimised interface for experts.

4.7.3 Search Results View

Search results views need to be customizable to enable occasional and expert users alike to
easily identify sought-after content. This means that users can change what and how search
results are displayed using Extensible Stylesheet Language (XSL) by creating and uploading
stylesheets on their own. Therefore multiple presentation formats, like a matrix of results, are
possible (as seen on Europeana). The standard format is a simple listing of selected metadata
fields with a fixed number of results. It contains title, creator, publisher, issued to implement
the ‘who, when, where, what’ scheme. Controls for navigating to the next, previous and other
pages are added. This pagination functionality is again based on Drupal 7 API.

Each record in the result-set is shown with title and a customizable stylesheet that displays
parts of the metadata and possibly a thumbnail. Users are also capable of changing how data
is displayed through the stylesheet definition.

D3.7 Key components documented for output of D3.5

 38/179

Figure 4-30: Search results view. Can be customized using XSL transformations.

4.7.4 Metadata View

The metadata view consists of the title of the record and an again customizable stylesheet that
transforms the XML-metadata into HTML. Therefore many ways to display the metadata are
possible. The Drupal 7 node concept forms that technological basis of the metadata view. We
are using the Drupal 7 nodes to store all metadata for a specific item or title. The format is
based upon METS and includes lots of different sections. BHL-Europe METS file contains
lots of different metadata sections and further tests will show which fields are more relevant
and need to be indexed permanently19. The whole METS document is stored in the nodes’
body and can be accessed using stylesheets. Therefore specific metadata views are possible,
e.g. more taxonomic oriented display of data, or even a more technological metadata view to
view information about scanned pages. We are creating a preset view which is based upon the
bibliographic information and thus transforms MODS to HTML. Users are able to create
these stylesheets themselves, and choose different stylesheets to display the metadata nodes.

19 Complex indices need several hours, up to days, to be rebuilt from scratch. Experience shows that corrupted

indices need to be rebuilt from scratch. Therefore relevant fields should be selected wisely thus being based on
user and expert feedback.

D3.7 Key components documented for output of D3.5

 39/179

Figure 4-31: Metadata view. Can be customized using XSL transformations.

4.7.5 User Profile Personalization

Users can configure settings such as the stylesheets used to display metadata and the metadata
fields that are displayed in search masks. The metadata fields displayed in search masks can
be selected based upon whatever fields are indexed in the Apache Solr core for advanced
search. This enables us to change the search index and make adaptations more easily without
having to touch source code.

Users may save search queries (see Figure 4-34). The saved queries can be activated later on,
so that the saved query gets executed again. Actually the Solr query string is stored if the user
wants to save a certain query.

D3.7 Key components documented for output of D3.5

 40/179

Figure 4-32: User profile personalization. Customizable search fields.

D3.7 Key components documented for output of D3.5

 41/179

Figure 4-33: User profile personalization. Customizable XSL transformations for views.

D3.7 Key components documented for output of D3.5

 42/179

Figure 4-34: Search queries can be saved for later search. The screenshot shows a preliminary view of a
user’s saved queries.

D3.7 Key components documented for output of D3.5

 43/179

4.7.6 Multi-lingual UI of the BHL-Europe Portal

Drupal’s localization and internationalization modules20 are used to facilitate the translation
of the Portal. There are already seven languages implemented: Czech, English, German,
French, Italian, Portuguese, Spanish.

Figure 4-35: Multilingual settings showing seven different languages.

20 http://drupal.org/documentation/modules/locale

http://drupal.org/documentation/modules/translation
http://drupal.org/project/l10n_update
http://drupal.org/project/potx

D3.7 Key components documented for output of D3.5

 44/179

Figure 4-36: Multi-lingual capabilities. Personalization of the portal language in users’ profile.

D3.7 Key components documented for output of D3.5

 45/179

Figure 4-37: Multi-lingual capabilities. Advanced Search 2 localized in French.

D3.7 Key components documented for output of D3.5

 46/179

Figure 4-38: Multi-lingual capabilities. Advanced Search 2 localized in Italian.

D3.7 Key components documented for output of D3.5

 47/179

4.7.7 Content View

The Internet Archive BookReader21 is used to implement the content view of each book.
Image processing is done on a per request basis. Once an image has been converted it is
cached internally and the next request therefore is a lot faster. Preview versions of ingested
pages for collections RBGE, RMCA, UH-VIIKKI, CSIC have been created. These providers
actually don’t have their content online at their websites, so this content is provided for public
viewing for the first time. Further development will include full text search inside of the book
reader which is based upon OCR and the implementation of a table of contents based upon
page types. Also minor changes and bug fixes need to be implemented.

Figure 4-39: Preview of the IA BookReader displaying content22 from collection RBGE.

21 http://openlibrary.org/dev/docs/bookreader
22 http://bhle-dev-1.nhm.ac.uk/aip-preview/bookreader/index.php?var=../uk-rbge/NRBGEv24-

46/Volume26/NRBGE_0026/NRBGE_0026_1964_0001#page/4/mode/2up

D3.7 Key components documented for output of D3.5

 48/179

4.7.8 Browse Index

Browsing is implemented primarily to enable users to discover content and metadata. In
future versions facets are going to be used here to give a better overview over the contents of
BHL-Europe portal.

Figure 4-40: Browse Index is implemented using an A-Z map.

4.7.9 Drupal 7

Drupal 7 is a content management system based on PHP5+. It offers various core-
functionalities for user-management, page-layout, site administration etc. It has a series of
concepts which are key for the BHL-Europe portal: Drupal 7 modules are developed by
migrating legacy code from the German prototype into a Drupal 7 API conformant code base.
This makes all BHL-Europe Portal features very maintainable and guarantees sustainability. It
is one of the goals to base development on systems which enable the community to further
sustain and develop it once the project is finished.

D3.7 Key components documented for output of D3.5

 49/179

4.7.9.1 Modules23

Additional functionality can be integrated via modules. The BHL-Europe Portal component is
in fact a collection of modules. This provides the ideal ground for porting functionality from
the German prototype to the BHL-Europe portal. There are more than 1500 Drupal 7 modules
registered out of more than 7800 in total (versions including 7 and below).

4.7.9.2 Nodes

A node is a Drupal object that stores content. These nodes can be articles, blog entries, etc.. In
the case of BHL-Europe we create our own nodes. Nodes store metadata and can be seen as a
cache which is updated through the Access component. A ‘Metadata node’ has been
developed which holds all METS content and displays it using a default stylesheet. Users can
customize this stylesheet or add their own.

4.7.9.3 Fields24

Fields extend nodes and are new in Drupal 7. Each node has an attached body-field, that
stores the content of the node. In the case of BHL-Europe its content is the XML-METS
metadata of the record. But a node can also have additional fields attached to it. The BHL-
Europe-Id of the record is extracted from METS and saved in an field. This unique identifier
is used throughout all of BHL-Europe and also used to update the Drupal 7 cache using the
Access component.

4.7.9.4 Drupal API25

The Drupal API (Application Programming Interface) is divided into several parts, of which
are especially used:

 Module system: Modules can implement a set of hooks, which are functions with
predefined names, that are called from the Drupal core in order to execute the
functionality of the module.

 Menu system: Menu entries on the page are generated here. Also paths components
such as search masks, result sets, configuration pages, etc. are registered.

 Form generation: The input fields for search, configuration, etc. are generated via the
forms API.

 Theme system: Components of themes can be accessed in the source code via the
theme API.

4.7.9.5 Solr integration into Drupal 7

Solr is an indexing software which is used to index all BHL-Europe-nodes. A search in the
portal uses the index in order to find the desired nodes.

23 http://drupal.org/project/Modules
24 http://drupal.org/community-initiatives/drupal-core/fields
25 http://api.drupal.org/api/drupal

D3.7 Key components documented for output of D3.5

 50/179

Indexed is the descriptive metadata section of the XML-METS from each node. For the
advanced search, additional metadata-fields are index separately. So searches can be executed
in one specific metadata-field.

4.7.9.6 XML Stylesheets

Because the metadata for each record is saved in XML, XSL is used to generate HTML from
the metadata. This is an easy and interchangeable way to provide a visual appealing view of
the metadata. Therefore XSL is used for every view module.

4.8 GUID Mint/Resolver

Following on from discussions held during the meeting in Alexandria; we have reviewed for
suitability with BHL-Europe’s architecture the current GUID approach implemented by
Bibliotheca Alexandrina, who use Handle.net as a resolution service. (see Appendix III.III)

We have found similarities in purpose and after feedback from this meeting intend to
implement the service to meet BHL-Europe needs via two components:

 a GUID Mint: opaque GUIDs will be generated on request and associated with
objects during Scan Managegement. Where the Content Provider scan process has
already been achieved without GUIDs, the Pre-Ingest process will carry out this
association.

 a Handle resolver: implemented at regional level, enabling growth to a global
architecture. Handles linking the GUID to the portal landing page URL for each
object will be created at first opportunity during the ingest to Fedora. The Handle
service will offer resolution for User requests from DOI to the object.

D3.7 Key components documented for output of D3.5

 51/179

5 The ingestion process from BHL-Europe to Europeana

Once the BHL-Europe content partners have uploaded their metadata and image files into the
FTP directories of the London Natural History Museum’s server the ingestions process to
BHL-Europe and also to Europeana starts.

The content providers acknowledge their finalization of upload based on the Pre-Ingest
guidelines to the WP2 lead. Next a schema mapping tool developed by WP3 converts all
metadata supplied in the MARC format (MAchine-Readable Cataloging,
http://www.loc.gov/marc/) into the BHL-Europe METS (Metadata Encoding and Transmission
Standard, http://www.loc.gov/standards/mets) format. The descriptive metadata of the BHL-Europe
METS file is transformed into MODS (Metadata Object Description standard,
http://www.loc.gov/standards/mods).

Once these mapped files are available on the NHM FTP server the ingest process to
Europeana is initiated.

In this phase of the project whilst the final BHL-Europe portal is still under development the
established OAI-provider services of the BHL-Europe prototype are used for the direct
provision of data to Europeana.

The METS files are mapped to the Europeana ESE standard (www.europeana.eu) which is the
current data standard for Europeana and which is also integral part of the new Europeana Data
Model (EDM). For the mapping process the well-established open source business
intelligence suite Pentaho (http://www.pentaho.com/) is applied.

The toolset transforms the METS files into valid ESE files which may look like this:
<europeana:record xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xsi:schemaLocation="http://www.europeana.eu/schemas/ese/
http://www.europeana.eu/schemas/ese/ESE-V3.3.xsd">
 <dc:title>Notes from the Royal Botanic Garden Edinburgh: Volume 6, addition to numbers
XXIX-XXX (January 1917) (part name)</dc:title>
 <dc:publisher>HMSO (Edinburgh)</dc:publisher>
 <dc:type>Text</dc:type>
 <dc:format>print</dc:format>
 <dc:identifier>d2bd6a0e-d46a-4f0c-9486-c6060235b201</dc:identifier>
 <dc:identifier>0080-4274</dc:identifier>
 <dc:identifier>26774</dc:identifier>
 <dc:language>eng</dc:language>
 <dc:relation>Edinburgh Journal of Botany</dc:relation>
 <dcterms:tableOfContents>Plates I-XXXVII illustrating Mr Takeda's paper on the Genus
Mahonia.</dcterms:tableOfContents>
 <dcterms:issued>1921</dcterms:issued>
 <europeana:object>http://bhle-dev-1.nhm.ac.uk/aip-preview/uk-rbge/NRBGEv1-
23/Volume06/NRBGE_0006/NRBGE_0006_1917_0029-30_PLATES/thumbnail.jpg</europeana:object>
 <europeana:provider>BHL-Europe </europeana:provider>
 <europeana:type>TEXT</europeana:type>
 <europeana:rights>http://www.europeana.eu/rights/rr-f/</europeana:rights>
 <europeana:dataProvider>Royal Botanic Garden Edinburgh; United
Kingdom</europeana:dataProvider>
 <europeana:isShownBy>http://bhle-dev-1.nhm.ac.uk/aip-preview/uk-rbge/NRBGEv1-
23/Volume06/NRBGE_0006/NRBGE_0006_1917_0029-30_PLATES</europeana:isShownBy>
<europeana:isShownAt>http://bhl.ait.co.at/index.php?form=display&oaiid=RBGE/D2BD6A0ED46A4F
0C9486C6060235B201</europeana:isShownAt>
 </europeana:record>

Figure 5-1: Europeana ESE data

D3.7 Key components documented for output of D3.5

 52/179

5.1 The Europeana fields

<europeana:isShownBy>

This field must contain the link to the digital object.

At this stage of the project a first book viewer version was established at the NHM server
using the Open Library BookReader developed by InternetArchive. The link to this online
viewer is added in the respective Europeana field.

Figure 5-2: BookReader View of BHL-Europe content

D3.7 Key components documented for output of D3.5

 53/179

<europeana:isShownAt>

This field will in future link directly to Website of the final BHL-Europe portal where the
book is described.

The portal is still under development, but this fact was no obstacle to the Europeana ingests as
in the very first ingestion phase partners with own online representations of their content
(BHL-US, NAT, LANDOE, UBER, UBBI, UCPH) were selected. And for the partners of the
second major ingestion phase (RMCA, RBGE, UHVIIKKI, CSIC) the display of the BHL-
Europe Prototype where the OAI provider for Europeana is located was used.

Figure 5-3: Detail view in the BHL-Europe prototype

D3.7 Key components documented for output of D3.5

 54/179

 <europeana:dataProvider>

The value of this field displays the official name of the content delivering institution and is
depicted in the Europeana result list display above the name of the Europeana aggregator. The
institutions acknowledged to WP3 which version of their name they want to use for
Europeana. The value of this field is automatically inserted during the ingest to the Europeana
OAI provider.

<europeana:provider>

The value of this field shows the name of the institution, project or aggregator that directly
supplies data to Europeana. The value “BHL-Europe” is added automatically.

Figure 5-4: Display of the europeana:dataProvider field and the europeana:provider field

D3.7 Key components documented for output of D3.5

 55/179

<europeana:rights>

With the release of the ESE standard version 3.3 (autumn 2010) the data field
europeana:rights was introduced. This field includes a statement about the rights status of the
digital objects described in the metadata submitted to Europeana. The value of the field must
be an URL linking to a license statement. WP3 provided to the content providers samples of
statements and they finally chose what license URL they what to have inserted in this field. A
license was added to the content automatically if it applied to all content/records of the
partner. If the partner submitted records with different license URLs the information had to be
within the metadata.

Figure 5-5: Display of the europeana:rights field together with license icon

D3.7 Key components documented for output of D3.5

 56/179

<europeana:object>

This field provides for Europeana the link to the thumbnail for the record. It was suggested
during a project meeting to use the image qualified as “title” for that purpose. Whenever there
was no image with “title” in the filename the image with “cover” in the filename was used as
thumbnail image.

During the Pre-Ingest process the thumbnails for the records are generated.

Figure 5-6: Thumbnails for Europeana

<europeana:type>

The value of this field must be one of: TEXT, IMAGE, VIDEO, SOUND. For BHL-Europe
content the value “Text” is added automatically to each record as all of the BHL-Europe
content is library content/books. We do not ingest separate images out of books into
Europeana but always whole books or whole articles.

5.2 Europeana content checking

Once the content of the partners is in the OAI repository the partners receive a link to their
content in the Europeana content checker tool where they can preview their records. In
general about 100 test items per partner ae uploaded to the content checker as the tool is not
suited for mass uploads but rather for a “look-and-feel” preview checking.

D3.7 Key components documented for output of D3.5

 57/179

Figure 5-7: Detail view in the content checker tool

Partners could give WP3 feedback on their content presentation in the content checker tool.
Their feedback was incorporated before the data was finally provided to Europeana.

At this time Europeana office also receives the link to the new content in the content checker
and provides feedback.

On April 21st 2011 a new Europeana harvest of the following BHL-Europe sets was
requested:

 * BHLUS (87572)

 * CSIC (9)

 * LANDOE (3511)

 * NBN (3516)

 * RBGE (183)

 * RMCA (52)

 * UBBI (1634)

 * UBER (60)

 * UCPH (28)

 * UHVIIKKI (30)

D3.7 Key components documented for output of D3.5

 58/179

Europeana started the harvest on April 22nd in the morning. The data will be part of the new
Europeana publication in early May 2011.

Figure 5-8: Books for Europeana (UBER)

Figure 5-9: Articles for Europeana (UBBI)

D3.7 Key components documented for output of D3.5

 59/179

I Acronyms

AIP Archival Information Package

API Application Programming Interface

AS Archival Storage

AUC Archivist Use Case

BHL Biodiversity Heritage Library

BHL-US Smithsonian Institution, Natural History Museum London, US, UK

CRC Cyclical Redundancy Check

CSIC Consejo Superior de Investigaciones Cientificas, ES

DI Descriptive Information

DIP Dissemination Information Package

DM Data Management

ESE Europeana Semantic Elements

ETL Extract, Transform, Load

Europeana European Digital Library

GRIB Global References Index to Biodiversity

GUID Global Unique Identifier

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

ING Ingest

ISO International Organization for Standardization

JSON JavaScript Object Notation

LANDOE Land Oberösterreich, AT

LOCKSS LOCKSS (Lots of Copies Keep Stuff Safe), based at Stanford University
Libraries, is an international community initiative that provides libraries
with digital preservation tools and support so that they can easily and
inexpensively collect and preserve their own copies of authorized e-
content

MARC MAchine-Readable Cataloging

METS Metadata Encoding and Transmission Standard

MIME type Internet Media Type

MODS Metadata Object Description standard

NAT Stichting Nationaal Natuurhistorisch Museum, NL

D3.7 Key components documented for output of D3.5

 60/179

OAI Open Archives Initiative

OAI-PMH Open Archives Initiative Protocol for Metadata Harvesting

OAIS Open Archival Information System

OCR Optical Character Recognition

ODBC Open Database Connectivity

OLEF Open Literature Exchange Format

PDI Preservation Description Information

PI Pre-Ingest

PUC Producer Use Case

RBGE Royal Botanic Garden Edinburgh, UK

RDF Resource Description Framework

REST Representational state transfer

RMCA Royal Museum for Central Africa, BE

RSS Really Simple Syndication (RSS) is a lightweight XML format designed
for sharing headlines and other Web content.

SIP Submission Information Package

SOAP Simple Object Access Protocol providing a simple and lightweight
mechanism for exchanging structured and typed information between
peers in a decentralised, distributed environment using XML proposed
under the W3C.

SWORD Simple Webservice Offering Repository Deposit

UBBI University of Bielefeld, DE

UBER Humboldt-Universität zu Berlin, DE

UCPH University of Copenhagen, DK

UHVIIKKI Helsingin yliopisto, FI

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML EXtensible Markup Language

XSLT XSLT (XSL Transformations) is a declarative, XML-based language used
for the transformation of XML documents into other XML documents.

D3.7 Key components documented for output of D3.5

 61/179

II Figures

Figure 2-1: SIP Preparation Workflow .. 7

Figure 3-1: BHL-Europe Architecture Diagram ... 9

Figure 4-1: Metadata Mapping to OLEF.. 11

Figure 4-2: Schematic outline of OLEF structure.. 12

Figure 4-3: Pre-Ingest process as documented in Deliverable 3.4 ... 13

Figure 4-4: Comparison of Merritt vs. Archivematica micro-services for Pre-Ingest. 14

Figure 4-5: Pre-Ingest Workflow showing pool with swim lanes / part 1. 15

Figure 4-6: Pre-Ingest Workflow showing pool with swimlanes / part 2. 16

Figure 4-7: OAIS function model showing the location of Pre-Ingest. 17

Figure 4-8: OAIS functions of ingest showing which areas are also partly covered by the Pre-
Ingest component. .. 17

Figure 4-9: Web application for the Pre-Ingest Tool. Submitted directories can be selected for
further processing... 18

Figure 4-10: Visualization of different messaging channels and service activators (such as
loading-ramp, security-check, boxing, create-aip, …) of Pre-Ingest Tool. Starting from
loading gateway in the upper left until create-aip in the lower right. 20

Figure 4-11: Deployment diagram of the Pre-Ingest tool. ... 21

Figure 4-12: Pentaho Kettle transformation from Excel to XML using multiple enrichment
steps in between. .. 23

Figure 4-13: Deployment diagram of Ingest component showing the script used for batch
ingest of AIPs and the web application Directory Ingest Service (in the context of Fedora
Commons). ... 24

Figure 4-14: The ingest component covers the process required to ingest AIPs into the
Archival storage system. .. 24

Figure 4-15: Ingest architecture as documented in Deliverable 3.4... 25

Figure 4-16: Archival Storage Architecture... 26

Figure 4-17: Archival Storage Deployment Diagram .. 28

Figure 4-18: Data Management Architecture... 29

Figure 4-19: Data Management Deployment Diagram.. 30

D3.7 Key components documented for output of D3.5

 62/179

Figure 4-20: Deployment diagram of Access component.. 31

Figure 4-21: Access processes covered in the context of BHL-Europe.................................. 31

Figure 4-22: Access Architecture as planned in D3.4.. 32

Figure 4-23: Deployment diagram showing Drupal 7 modules as components (core features
and metadata node). Ontology services are used for taxonomic enrichment........................... 33

Figure 4-24: Simple search screenshot from current development version. 34

Figure 4-25: Advanced search from current development version. Multiple fields can be
select... 35

Figure 4-26: Advanced search example as seen on Europeana. .. 35

Figure 4-27: Advanced search (Google-like) from current development version. 36

Figure 4-28: Advanced search as seen on www.google.com... 36

Figure 4-29: Advanced search screenshot from current development version. Search syntax
can be manually entered and thus provides an optimised interface for experts. 37

Figure 4-30: Search results view. Can be customized using XSL transformations. 38

Figure 4-31: Metadata view. Can be customized using XSL transformations......................... 39

Figure 4-32: User profile personalization. Customizable search fields. 40

Figure 4-33: User profile personalization. Customizable XSL transformations for views...... 41

Figure 4-34: Search queries can be saved for later search. The screenshot shows a preliminary
view of a user’s saved queries.. 42

Figure 4-35: Multilingual settings showing seven different languages. 43

Figure 4-36: Multi-lingual capabilities. Personalization of the portal language in users’
profile. .. 44

Figure 4-37: Multi-lingual capabilities. Advanced Search 2 localized in French.................... 45

Figure 4-38: Multi-lingual capabilities. Advanced Search 2 localized in Italian..................... 46

Figure 4-39: Preview of the IA BookReader displaying content from collection RBGE........ 47

Figure 4-40: Browse Index is implemented using an A-Z map. .. 48

Figure 5-1: Europeana ESE data .. 51

Figure 5-2: BookReader View of BHL-Europe content .. 52

Figure 5-3: Detail view in the BHL-Europe prototype .. 53

Figure 5-4: Display of the europeana:dataProvider field and the europeana:provider field 54

Figure 5-5: Display of the europeana:rights field together with license icon 55

D3.7 Key components documented for output of D3.5

 63/179

Figure 5-6: Thumbnails for Europeana .. 56

Figure 5-7: Detail view in the content checker tool ... 57

Figure 5-8: Books for Europeana (UBER)... 58

Figure 5-9: Articles for Europeana (UBBI) ... 58

D3.7 Key components documented for output of D3.5

 64/179

III Appendices

III.I Pre-Ingest File Submission Guidelines

Sproger B.: ‘Technical Note Pre-Ingest File Submission Guidelines’, October 2010

D3.7 Key components documented for output of D3.5

 65/179

ECP-2008-DILI-518001

BHL-Europe

Technical Note

Pre-Ingest File Submission Guidelines

Deliverable number TN-SPRINT03-314

Dissemination level Public

Delivery date October 2010

Status Final

Author(s) Bernd Sproger

eContentplus

This project is funded under the eContentplus programme26,
a multiannual Community programme to make digital content in Europe more accessible, usable and exploitable.

26 OJ L 79, 24.3.2005, p. 1.

D3.7 Key components documented for output of D3.5

 66/179

Table of contents

1 DOCUMENT HISTORY.. 67
1.1 CONTRIBUTORS .. 67
1.2 REVISION HISTORY... 67
1.3 DISTRIBUTION... 67

2 FILE SUBMISSION GUIDLINES .. 68
2.1 GENERAL RULES FOR DIRECTORY AND FILE NAMES .. 68
2.2 DIRECTORY STRUCTURE AND FILENAME PATTERN .. 68
2.3 EXAMPLES .. 69

3 FAQ .. 70

4 OPTIONAL: PACKAGE INFORMATION METADATA... 71

D3.7 Key components documented for output of D3.5

 67/179

1 Document History

1.1 Contributors
A discussion about the specifications was initiated and the following persons provided input
that was used for the present document.

Person Partner

Bernd Sproger AIT

1.2 Revision History

Revision Date Author Version Change Reference & Summary

2010-09-28 Bernd Sproger 0.1 1. Draft

2010-11-25 Bernd Sproger 0.2 Added to FAQ

2011-02-15 Bernd Sproger 0.3 Added to FAQ: OAI harvesting of metadata

2011-05-03 Chris Sleep Final Dissemination changed to public for D3.7

1.3 Distribution
This document has been distributed to:

Group Date of issue Version

BHL-Europe content providers (bhl-
e.cp@lists.hu-berlin.de)

2010-10-19 0.1

BHL tech group (bhle-
tech@googlegroups.com)

2010-10-19 0.1

BHL-Europe WP3 2010-10-19 0.1

BHL WIKI
(https://bhl.wikispaces.com/BHL-
E_WP3_PREINGEST)

2010-10-19 0.1

D3.7 Key components documented for output of D3.5

 68/179

2 File Submission Guidlines
The file submission guidelines are necessary to allow automatic processing of submitted
content and metadata. If you can’t adhere to the file submission guidelines, please send an
email to kochg@ait.co.at.

2.1 General Rules for Directory and File Names
 Preferably use only ASCII characters and Western/Arabic numbers (0-9)
 Don’t use: <, >, ", /, |, ?, *
 Avoid to use blank spaces
 Lower case file names are preferred (“abc” instead of “Abc”)
 Use three-letter extensions for file names (.tif for TIFF images, .jpg for JPEGs, etc.)

2.2 Directory Structure and Filename Pattern
The directory structure aims to reliably identify titles and items and to reliably identify what
files belong to which title or which item. You can create multiple folders for your items and
multiple folders for your titles. Item folders are nested inside a title folder. Scanned images
always belong to items:

\
optional.ext

titleidentifier\
titleidentifier_metadata.ext
titleidentifier_optionalinfo.ext
optional.ext
itemidentifier\

itemidentifier_sequencenumber_pagetype.ext
itemidentifier_metadata.ext
itemidentifier_optionalinfo.ext
optional.ext

If an item has no title, the titleidentifier directory must be omitted:

\
optional.ext

itemidentifier\
itemidentifier_sequencenumber_optionalinfo.ext
itemidentifier_optionalinfo.ext
optional.ext

D3.7 Key components documented for output of D3.5

 69/179

2.3 Examples

An item consists of a directory with multiple image files and one metadata file:

301519\
 301519_0001.tif
 301519_0002.tif
 301519_metadata.xml

An item consisting of a directory with multiple image files, metadata files, and others:

301519\
 301519_0001_cover.tif
 301519_0002_blank.tif
 301519_0003_title.tif
 […]
 301519_0899.tif
 301519_metadata.mrc
 301519_article_01_metadata.mrc
 301519_article_02_metadata.mrc
 301519_articles_start_end_fileinfo.xml
 301519_scanning_info.xml
 301519_document_ocr.pdf
 general_info.txt
 thumbs.db
 bag-info.txt

A title may consist of multiple items. Items could contain other items such as articles:

gartenkal\
gartenkal_title.xml

821\
 821_0001_cover.tif
 821_0002_blank.tif
 821_0003_title.tif

[…]
821_1002_page_999.tif

 821_metadata.mrc
 821_scanning_info.xml
831\

[…]
 831_01\ […]
 831_02\ […]
834\

[…]
 834_01\ […]
 834_02\ […]

D3.7 Key components documented for output of D3.5

 70/179

Files that don’t belong to titles or items need to be part of the top-level directory:

\
general_info.txt
all_metadata_database.sql

gartenkal\
gartenkal.mrc

821\
[…]

831\
[…]

834\
 […]

magnaturkdehelvet\
magnaturkdehelvet.mrc

871\
[…]

881\
 […]
891\
 […]

Example of a title where there are no separate item metadata files:

gartenkal\
gartenkal_title_and_all_items_metadata.xml

821\
 821_0001_cover.tif
 821_0002_blank.tif
 821_0003_title.tif

[…]
821_1002_page_999.tif

831\
 […]

3 FAQ
 My local identifiers (URNs) are using special characters which can’t be used in

filenames or directory names. What should I do?

We understand that URNs are a popular way to organise identifiers because they add
namespaces to make identifiers more globally unique. URNs contain “:” which can’t be used
on Windows filesystems. Please exclude the URN prefix containing your namespace, e.g.:
urn:nbn:de:gbv:089-3321752945 becomes 089-3321752945. Please always inform us about
such steps, so we can correctly process your submissions afterwards.

D3.7 Key components documented for output of D3.5

 71/179

 How do I need to structure articles, items and title metadata?

Put bibliographic metadata inside directories that hold scanned items such as :

NRBGE_0004\
NRBGE_0004\NRBGE_0004_Vol4.mrc
NRBGE_0004\NRBGE_0004_1905_0016\
NRBGE_0004\NRBGE_0004_1905_0016\NRBGE_0004_1905_0016_ Issue16.mrc
NRBGE_0004\NRBGE_0004_1905_0016\NRBGE_0004_1905_0016_ ArticlesForIssue16.m

 How do I proceed with submitting content if my metadata is available via OAI
provider?

We gladly harvest your metadata via an OAI-PMH interface. Of course we still need means to
identify which submitted content belongs to which metadata. Therefore it’s recommended that
you name your folders using the same identifiers that are used by your OAI provider. Please
contact us for special cases where your OAI identifier can’t be used.

4 Optional: Package Information Metadata
Attention: Following information is optional only and the intended audience are content
providers with a strong technical background.

Submissions are going to be packaged once they are uploaded, and package information
metadata will be generated and included. This prevents unwanted modification of the package
payload (submitted content and metata) and enables further processing of data and enrichment
of metadata. We are using a software library developed by the Library of Congress called
BagIt27. If you or your digitisation provider are able to include package information metadata
with your submission, please add a file called “bag-info.txt” to your items directory
containing:

<Element>: <Content>

 Source-Organization: AIT Angewandte Informationstechnik
 Organization-Address: Klosterwiesgasse 33, Graz
 Contact-Name: Dr. Walter Koch
 Contact-Phone: +43 316-835359-74
 Contact-Email: admin@ait.co.at
 External-Description: old german book in Gothic print
 Bagging-Date: 2010-10-01
 External-Identifier: cat00098
 Bag-Size: 2 GB

For your convenience we append the section 4.2 about BagIt metdata extracted from the BagIt
v0.96 specification paper:

27 https://confluence.ucop.edu/display/Curation/BagIt

D3.7 Key components documented for output of D3.5

 72/179

4.2. Other bag metadata: bag-info.txt

The "bag-info.txt" file is a tag file that contains metadata elements describing the bag and the
payload. The metadata elements contained in the "bag-info.txt" file are intended primarily for
human readability. All metadata elements are optional. A metadata element consists of a
label, a colon, and a value. Whitespace after the first non-whitespace in the value is
considered part of the value. Long values may be folded (continued) onto the next line by
inserting a newline (LF), a carriage return (CR), or carriage return plus newline (CRLF) and
indenting the next line (any combination of spaces and tabs). It is recommended that lines not
exceed 79 characters in length. Reserved metadata element names are case-insensitive and
defined as follows.

Source-Organization

Organization transferring the content.
Organization-Address

Mailing address of the organization.
Contact-Name

Person at the source organization who is responsible for the content transfer.
Contact-Phone

International format telephone number of person or position responsible.
Contact-Email

Fully qualified email address of person or position responsible.
External-Description

A brief explanation of the contents and provenance.
Bagging-Date

Date (YYYY-MM-DD) that the content was prepared for delivery.
External-Identifier

A sender-supplied identifier for the bag.
Bag-Size

Size or approximate size of the bag being transferred, followed by an abbreviation
such as MB (megabytes), GB, or TB; for example, 42600 MB, 42.6 GB, or .043 TB.
Compared to Payload-Oxum (described next), Bag-Size is intended for human
consumption.

Payload-Oxum
The "octetstream sum" of the payload, namely, a two-part number of the form
"OctetCount.StreamCount", where OctetCount is the total number of octets (8-bit
bytes) across all payload file content and StreamCount is the total number of payload
files. Payload-Oxum is easy to compute (e.g., on Unix "wc -lc `find data/ -type f`")
and should be included in "bag-info.txt" if at all possible. Compared to Bag-Size
(above), Payload-Oxum is intended for machine consumption.

Bag-Group-Identifier
A sender-supplied identifier for the set, if any, of bags to which it logically belongs.
This identifier must be unique across the sender's content, and if recognizable as
belonging to a globally unique scheme, the receiver should make an effort to honor
reference to it.

D3.7 Key components documented for output of D3.5

 73/179

Bag-Count
Two numbers separated by "of", in particular, "N of T", where T is the total number of
bags in a group of bags and N is the ordinal number within the group; if T is not
known, specify it as "?" (question mark). Examples: 1 of 2, 4 of 4, 3 of ?, 89 of 145.

Internal-Sender-Identifier
An alternate sender-specific identifier for the content and/or bag.

Internal-Sender-Description
A sender-local prose description of the contents of the bag.

In addition to these metadata elements, other arbitrary metadata elements may also be present.

D3.7 Key components documented for output of D3.5

 74/179

III.II Technote: WebDAV

Sproger B.: “BHL-Europe WebDAV fallback solution to replace FTPS service”, 2011-01-03

D3.7 Key components documented for output of D3.5

 75/179

ECP-2008-DILI-518001

BHL-Europe

Technical Note

BHL-Europe WebDAV fallback solution to
replace FTPS service

Deliverable number TN-Addendum-WebDAV

Dissemination level Public

Delivery date 2011-01-03

Status Final

Author(s) Bernd Sproger

eContentplus

This project is funded under the eContentplus programme28,
a multiannual Community programme to make digital content in Europe more accessible, usable and exploitable.

28 OJ L 79, 24.3.2005, p. 1.

D3.7 Key components documented for output of D3.5

 76/179

Table of contents

1 DOCUMENT HISTORY.. 77
1.1 CONTRIBUTORS .. 77
1.2 REVISION HISTORY... 77
1.3 DISTRIBUTION... 77

2 PURPOSE OF THIS DOCUMENT... 78

3 SUPPORTED WEBDAV CLIENTS.. 78

4 LOGIN CREDENTIALS FOR WEBDAV.. 78

5 SETUP GUIDES.. 78
5.1 BITKINEX QUICK SETUP GUIDE.. 78
5.2 CYBERDUCK QUICK SETUP GUIDE.. 80
5.3 UBUNTU QUICK SETUP GUIDE.. 81

D3.7 Key components documented for output of D3.5

 77/179

1 Document History

1.1 Contributors
A discussion about this issue was initiated and the following persons provided input that was
used for the present document.

Person Partner

Bernd Sproger AIT

Antonio G Valdecasas CSIC

Tom Gilissen Naturalis

1.2 Revision History

Revision Date Author Version Change Reference & Summary

2010-12-21 Bernd Sproger 0.1 1. Draft

2011-01-03 Bernd Sproger 0.2 1. Revision, added Ubuntu Setup Guide

2011-05-03 Chris Sleep Final Dissemination changed to public for D3.7

1.3 Distribution
This document has been distributed to:

Group Date of issue Version

Naturalis, RMCA, MNHN, CSIC, RBGE 2010-12-21 0.1

D3.7 Key components documented for output of D3.5

 78/179

2 Purpose of this document
This document describes a fallback solution to upload content and metadata to servers at
NHM by using secured WebDAV instead of FTPS. WebDAV is similar to FTPS but uses
HTTP as transmission protocol and therefore should be less error prone to very restrictive
firewall policies at content provider’s sites. There come certain downfalls with the use of
WebDAV such as less file transmission speed, but anyway files are transmitted reliably.

3 Supported WebDAV clients
We have done file transmission tests using the following clients:

 Operating Systems Source
BitKinex Windwos http://www.bitkinex.com/
Cyberduck Windows / MaxOSX http://cyberduck.ch/
cadaver Linux http://www.webdav.org/cadaver/

4 Login Credentials for WebDAV
Since WebDAV is a fallback solution for FTPS we are using the same login credentials which
have already been provided to content providers.

5 Setup Guides
Setup and usage of WebDAV clients is generally very similar to usage of FTP clients such as
Filezilla. We have provided a few screenshots and setup steps for BitKinex and Cyberduck to
help you through the first few steps. File upload, download, etc. is identical with FTP clients.

5.1 BitKinex Quick Setup Guide
BitKinex is an advanced WebDAV client and supports many different settings. We have
compiled a few quick setup steps.

1) In the Main Menu go to 'Data Source' -> 'New' -> 'Http/WebDAV'
2) Name the new entry e.g. 'NHM BHL-Europe'
3) Next a window pops up giving you many configuration options (see Figure 5-1).

D3.7 Key components documented for output of D3.5

 79/179

Figure 5-1: Server configuration window of BitKinex client

3a) Select 'Server' and enter 'bhl-celsus.nhm.ac.uk in the field 'Server address'
3b) Choose 'SSL' in the Security dropdownbox.
3c) Enter the fields 'User' and 'Password' using your FTPS login credentials already
provided to you by NHM.
4) Select 'Site Map' in the left menu (see Figure 5-2)

Replace with your
login credentials

D3.7 Key components documented for output of D3.5

 80/179

Figure 5-2: Site Map configuration window

4a) Click on the the row starting with '/' thus highlighting it.
4b) Right under the area with the cells edit the field containg '/' and replace it with e.g.
'/uploads/NAT/'
4c) Click on the button 'Update'
5) Click on the button OK

5.2 Cyberduck Quick Setup Guide
Cyberduck has been tested on Windows only, but usage for MacOSX should be very similar
since this client originally was published for MacOSX:

1) Select ‘New Connection’
2) Enter the connection details as seen in Figure 5-3.
3) Double-click the newly created connection to login
4) Enter your password and save it for future use.

Replace ‘test’ with
your directory

D3.7 Key components documented for output of D3.5

 81/179

Figure 5-3: New Connection configuration window

5.3 Ubuntu Quick Setup Guide29
Taken out of the online Ubuntu manual for your convenience:

(Ubuntu Documentation > Ubuntu 10.10 > Internet and Networks > Connect to a server >
WebDAV (HTTP))

Click Places → Connect to Server....
From Service Type choose WebDAV (HTTP).
Enter the server address in Server.
Enter Port and Folder and Username if you need to, this is optional.
If you want a bookmark, click the checkbox and enter a bookmark name.

Click Connect.
You will be prompted for a password if necessary.

29 https://help.ubuntu.com/10.10/internet/C/connecttoserver-webdav.html

Replace ‘testspace’
with your directory

Replace with your
login credentials

D3.7 Key components documented for output of D3.5

 82/179

III.III Technote: BHL-Europe GUID

Sproger B., Koch W.: “ BHL-Europe GUID Architecture and Implementation Approach”,
2011-01-20

D3.7 Key components documented for output of D3.5

 83/179

ECP-2008-DILI-518001

BHL-Europe

Technical Note

BHL-Europe GUID Architecture and
Implementation Approach

Deliverable number TN-Addendum-GUID

Dissemination level Public

Delivery date 2011-01-20

Status Final

Author(s) Bernd Sproger

eContentplus

This project is funded under the eContentplus programme30,
a multiannual Community programme to make digital content in Europe more accessible, usable and exploitable.

30 OJ L 79, 24.3.2005, p. 1.

D3.7 Key components documented for output of D3.5

 84/179

Table of contents

1 DOCUMENT HISTORY.. 85
1.1 CONTRIBUTORS .. 85
1.2 REVISION HISTORY... 85
1.3 DISTRIBUTION... 85

2 PURPOSE OF THIS DOCUMENT... 86

3 ARCHITECTURE OF BHL-EUROPE GUIDS ... 86

4 IMPLEMENTATION ASPECTS OF IDENTIFIERS... 87

5 CONCLUSION.. 87

D3.7 Key components documented for output of D3.5

 85/179

1 Document History

1.1 Contributors
A discussion about this issue was initiated and the following persons provided input that was
used for the present document.

Person Partner

Bernd Sproger, Walter Koch AIT

1.2 Revision History

Revision Date Author Version Change Reference & Summary

2011-01-20 Bernd Sproger 0.1 1. Draft

2011-05-03 Chris Sleep Final Dissemination changed to public for D3.7

1.3 Distribution
This document has been distributed to:

Group Date of issue Version

D3.7 Key components documented for output of D3.5

 86/179

2 Purpose of this document
This document describes the general BHL-Europe GUID architecture and implementation
approach. It is closely based on a publication of Adam J. Smith31 where Handle system32
based webservices are implemented at the University of Cornell. Handle system allows for
“efficient, extensible, and secure resolution services for unique and persistent identifiers of
digital objects”. Unique identifiers are assigned based on the NOID33 (Nice Opaque
Identifier) specification. Webservices are designed and implemented to enable CRUD (create,
read, update, delete) for GUIDs.

3 Architecture of BHL-Europe GUIDs

Figure 3-1: Cornell University’s architecture of web services integrating local handle client and server and

NOID minter. Modified for BHL-Europe.

31 Adam J. Smith: “Developing Handle System® Web Services at Cornell University”, D-Lib Magazine

September/October 2007, Volume 13 Number 9/10, ISSN 1082-9873.

http://www.dlib.org/dlib/september07/smith/09smith.html
32 http://www.handle.net
33 https://confluence.ucop.edu/display/Curation/NOID

D3.7 Key components documented for output of D3.5

 87/179

As you can see in Figure 3-1 Cornell University’s archtecture is perfectly suited for
implementation in the BHL-Europe context with small amendements. It’s a simple web
service based design that’s using the local handle client and handle server Java
implementations provided by Handle.NET. The NOID minter is using a Perl tool34 to mint
identifiers which is also providing a CGI-based interface to be easily integrated into a service
oriented architecture.

4 Implementation Aspects of Identifiers
Example for a GUID using the already registered BHL-Europe Handle35:
hdl:10706/f5td9v7s
hdl:<handle identifier>/<NOID>

The NOID wiki sums up some very important aspects about the design of an identifer:
“To help stability, an opaque identifier doesn't contain any information related to potentially
changeable properties. For instance, if an identifier contains an organizational acronym and
that organization is merged with another, there is often political pressure to break with the
past, which means pressure not to support previously published identifiers in which the old
acronym appears. Opaque identifiers also have the advantage that they can be short; for
example, using combinations of letters and digits, only four characters are needed to represent
as many as 1.6 million identifiers.”

Therefore identifiers mustn’t contain any ‘human-readable’ contents whatsoever! AIT
particularly stresses this fact since it has been subject of discussion36 in the past to include
changeable properties in the design of identifiers. We also suggest reading of the ARK37
specification, specifically sections ‘2.4 The Name Part’, ‘3 Naming Considerations’, ‘3.3
Names are Political, not Technological’. These snippets of the ARK specifications also
explain why identifiers mustn’t include any specific object attributes.

5 Conclusion
AIT supports the idea of using GUIDs for BHL content and provides an approach of how to
design and implement a solution based on already established best-practice approaches.

34 http://search.cpan.org/dist/Noid/
35 https://bhl.wikispaces.com/Installation_of_Handle.net_server
36 Based on a presentation given by Lee Namba during the BHL-Europe Tech Group Meeting in Amsterdam in

2010-10.
37 https://confluence.ucop.edu/display/Curation/ARK

D3.7 Key components documented for output of D3.5

88/179

III.IV Technote: Dataflow

Sproger B.: “BHL-Europe DataFlow from BHL-US to Europeana EXAMPLE”, 2010-09-27

D3.7 Key components documented for output of D3.5

89/179

ECP-2008-DILI-518001

BHL-Europe

Technical Note

BHL-Europe DataFlow from BHL-US to
Europeana
EXAMPLE

Deliverable number TN-Addendum-DataFlow

Dissemination level Public

Delivery date 2010-09-27

Status Final

Author(s) Bernd Sproger

eContentplus

This project is funded under the eContentplus programme38,
a multiannual Community programme to make digital content in Europe more accessible, usable and exploitable.

38 OJ L 79, 24.3.2005, p. 1.

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

90/179

Table of contents

1 DOCUMENT HISTORY.. 91
1.1 CONTRIBUTORS .. 91
1.2 REVISION HISTORY... 91
1.3 DISTRIBUTION... 91

2 PURPOSE OF THIS DOCUMENT... 92

3 EXAMPLE DATAFLOW FROM BHL-US.. 92
3.1 A1 - PROVIDES BHL-US METADATA ... 92
3.2 A2 - FETCHES BHL-US METADATA RECORDS ... 92
3.3 A3 - MAPS FROM BHL-US TO ESE .. 93
3.4 A4 - PROVIDES ESE METADATA .. 95
3.5 A5 - FETCHES ESE METADATA RECORDS .. 95
3.6 A6 - DISPLAYS METADATA RECORDS... 95

4 ‘THROW-AWAY’ BHL-EUROPE PROTOTYPE.. 97

5 SUGGESTED ARCHITECTURAL APPROACH TO DATA MAPPING.. 97

6 CONCLUSION.. 97

7 APPENDIX .. 97
7.1 IDEF0 DIAGRAMS... 97
7.2 BHL-US HTTP REST API RESPONSE FOR GETTITLEMETADATA() .. 102
7.3 MAPPED METADATA USING THE EUROPEANA ESE SCHEMA ... 103

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

91/179

1 Document History

1.1 Contributors
A discussion about this issue was initiated and the following persons provided input that was
used for the present document.

Person Partner

Bernd Sproger AIT

1.2 Revision History

Revision Date Author Version Change Reference & Summary

2010-09-09 Bernd Sproger 0.1 1. Draft

2010-09-15 Bernd Sproger 0.2 1. Final

2010-09-27 Bernd Sproger 0.3 1. Revision

2011-05-03 Chris Sleep Final Dissemination changed to public for D3.7

1.3 Distribution
This document has been distributed to:

Group Date of issue Version

MFN Berlin 2010-09-09 0.1

BHL-Europe Tech Group 2010-09-15 0.2

BHL-Europe Tech Group 2010-09-27 0.3

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

92/179

2 Purpose of this document
This document describes in detail the implemented BHL-Europe dataflow, i.e. transfer and
mapping of metadata from BHL-US to Europeana. Title and item metadata is fetched from
BHL-US, afterwards mapped to ESE, and eventually published via OAI-PMH to be harvested
by Europeana.

3 Example DataFlow from BHL-US
The following example shows the data flow from BHL-US to Europeana via the BHL-Europe
prototype portal. We are referencing the IDEF039 diagram boxes A1-A6 which are shown on
the IDEF0 diagram “BHL-Europe Data Flow with regards to BHL-US and ESE (AIT, 2010-
09-07) (Old)”. This diagram shows the dataflow without use of the BHL-Europe MODS
schema since this schema isn’t yet available at the time this document is written. The IDEF0
diagram “BHL-Europe Data Flow with regards to BHL-US, BHL-Europe MODS schema,
EDM/ESE (AIT, 2010-09-07)” is also included in this document for the sake of completeness,
but is not explicitly referenced in the following chapters.

3.1 A1 - Provides BHL-US Metadata
BHL-US provides publicly available information about the BHL-US application
programming interfaces (API). OAI-PMH, REST, SOAP are available.40

3.2 A2 - Fetches BHL-US Metadata Records
AIT fetches a BHL-US metadata for Title ID 2 “Examen classis dioeciae” using the BHL-US
API.41 Full response is listed in the Appendix. For reasons of simplicity we have extracted the
following text from the BHL-US API response which shows how authors are structured.

- <Authors>
- <Creator>
 <CreatorID>1106</CreatorID>
 <Name>East India Company.</Name>
 <Numeration />
 <Unit>Museum.</Unit>
 <Title />
 <Location />
 <Dates />
 </Creator>
- <Creator>
 <CreatorID>4</CreatorID>
 <Name>Fleischer, Max,</Name>
 <Numeration />
 <Unit />

39 IDEF Integrated Definition Methods, http://www.idef.com/
40 API Documentation, http://www.biodiversitylibrary.org/api2/docs/docs.html
41 Request (API Key is confidential):

http://www.biodiversitylibrary.org/api2/httpquery.ashx?op=GetTitleMetadata&titleid=2&items=t&apikey=f250
642e-fa4c-4e36-9a56-c164e5681ddf

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

93/179

 <Title />
 <Location />
 <Dates>1861-1930.</Dates>
 </Creator>
- <Creator>
 <CreatorID>3229</CreatorID>
 <Name>Kjellenberg, Fredrik Ulrik,</Name>
 <Numeration />
 <Unit />
 <Title />
 <Location />
 <Dates>1795-1862.</Dates>
 </Creator>
- <Creator>
 <CreatorID>3249</CreatorID>
 <Name>Söderberg, Christopher,</Name>
 <Numeration />
 <Unit />
 <Title />
 <Location />
 <Dates>1804-1833.</Dates>
 </Creator>
- <Creator>
 <CreatorID>108</CreatorID>
 <Name>Thunberg, Carl Peter,</Name>
 <Numeration />
 <Unit />
 <Title />
 <Location />
 <Dates>1743-1828.</Dates>
 </Creator>
- <Creator>
 <CreatorID>112</CreatorID>
 <Name>Wallich, N.</Name>
 <Numeration />
 <Unit />
 <Title />
 <Location />
 <Dates>1786-1854.</Dates>
 </Creator>
 </Authors>

3.3 A3 - Maps from BHL-US to ESE
AIT maps the received API response to Europeana ESE schema using the BHL-Europe
prototype portal. The following screenshots represent a search conducted on
http://bhl.ait.co.at using the search terms “Examen classis dioeciae”.

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

94/179

Figure 3-1: Zoomed-in screenshot from http://bhl.ait.co.at showing raw data received via BHL-US API.

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

95/179

Figure 3-2: Fullscreen screenshot from http://bhl.ait.co.at showing Raw Data received via BHL-US API.

3.4 A4 - Provides ESE Metadata
AIT provides mapped metadata fields for Europeana using an OAI-PMH provider. Fulltext of
the mapped metadata is listed in the Appendix. For reasons of simplicity we have extracted
authors/creators from the BHL-US metadata which were mapped to ESE by the BHL-Europe
German prototype.

 <ese-Creator>East India Company.</ese-Creator>
 <ese-Creator>Fleischer, Max,</ese-Creator>
 <ese-Creator>Kjellenberg, Fredrik Ulrik,</ese-Creator>
 <ese-Creator>Söderberg, Christopher,</ese-Creator>
 <ese-Creator>Thunberg, Carl Peter,</ese-Creator>
 <ese-Creator>Wallich, N.</ese-Creator>

3.5 A5 - Fetches ESE Metadata Records
Europeana harvests ESE metadata records provided by AIT via OAI-PMH harvester.

3.6 A6 - Displays Metadata Records
Europeana displays the fetched metadata records. We have made screenshots to show that the
metadata fields which were retrieved by the BHL-US API response, are now shown on
Europeana.

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

96/179

Figure 3-3: Screenshot showing search results for “Examen classis dioeciae” on http://www.europeana.eu.

Figure 3-4: Screenshot showing detailed result for “Examen classis dioeciae”.

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

97/179

4 ‘Throw-Away’ BHL-Europe Prototype
The current BHL-Europe prototype which is due by M18 is based on previous developments
and adaptions of the DISMARC search portal. It’s important to emphasize that the prototype
won’t be developed any further. Instead it will be broken down into several small components
so that we can create micro-services to be used for the BHL-Europe community portal. The
current BHL-Europe prototype is implemented in PHP5. All mappings are done via DOM42
manipulation of incoming XML-formatted metadata. There is a separate mapping class for
each metadata provider such as BHL-US which implements the specific requirements to map
to ESE. ESE is used as the target schema. There are no other schemas available at the time.
We are using Apache SOLR43 to create the search index.

5 Suggested Architectural Approach to Data Mapping
The IDEF0 diagram “BHL-Europe Data Flow with regards to BHL-US, Metadata Gateway,
BHL-Europe MODS Schema, EDM/ESE (AIT, 2010-09-27)” shows a new approach to
separate the metadata mapping from the Pre-Ingest Tool. The introduced gateway component
invokes a micro-service (web service) which is used to map the incoming data (e.g. BHL-US
metadata) to the outgoing format (i.e. BHL-Europe MODS). The service is loosley coupled
to the rest of the Pre-Ingest Tool, thus allowing to be exchanged easily. Therefore it will be
possible to introduce new mappings as micro-services.

6 Conclusion
It’s important to emphasize that no metadata was lost or incorrectly mapped during the
transfer of metadata fields from BHL-US to Europeana. Furthermore this technote
demonstrates impressively that the quality of input data is crucial.

7 Appendix

7.1 IDEF0 diagrams
The following diagrams depict different versions of the dataflows:

 “BHL-Europe Data Flow with regards to BHL-US and ESE (AIT, 2010-09-07) (Old)”
 “BHL-Europe Data Flow with regards to BHL-US, BHL-Europe MODS schema,

EDM/ESE (AIT, 2010-09-07)”
 “BHL-Europe Data Flow with regards to BHL-US, Metadata Gateway, BHL-Europe

MODS Schema, EDM/ESE (AIT, 2010-09-27)”

The first dataflow was used to map BHL-US metadata to ESE. This dataflow is going to
change with the introduction of the BHL-Europe MODS schema.

The second diagram demonstrates the dataflow once the BHL-Europe MODS schema is in
use. This will also support the new EDM/ESE schema.

42 Document Object Model, http://www.w3schools.com/dom/
43 http://lucene.apache.org/solr/

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

98/179

The third dataflow introduces a metadata gateway through which the metadata mapping will
be decoupled from the dataflow. Therefore metadata mapping becomes even more transparent
and future mappings can be integrated easier.

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

99/179

A1

Provides BHL-
US Metadata

A4

Provides ESE
Metadata

A3

Maps from BHL-
US to ESE

KNOTEN: TITEL: NR.:BHL-E Data Flow with regards to BHL US and ESE (AIT, 2010-09-07) (Old) v01A0

BHL-US
Metadata OAI-PMH specifics for Europeana

http://version1.europeana.eu/web/
guest/technical-requirements/

Europeana Semantic Elements
http://version1.europeana.eu/web/

guest/technical-requirements/

HTTP REST API specification for BHL-US
http://www.biodiversitylibrary.org/api2/

docs/docs.html

BHL US
provides MODS and DC Metadata
via public API / OAI-PMH Provider

http://biodivlib.wikispaces.com/
Developer+Tools+and+API

A5

Fetches ESE
Metadata
Records

A6

Displays
Metadata
Records

Europeana
harvests ESE

metadata records
via OAI-PMH

Harvester

Europeana's own
webportal

design
specifications

AIT maps available
metadata fields from BHL-

US OAI-PMH to Europeana
ESE and invokes data

mapping service

AIT operates an
OAI-PMH Provider
which makes ESE
metadata records

available for
harvesting

Europeana displays ESE
Metadata via Europeana
Webportal (Europeana)

A2

Fetches BHL-US
Metadata
Records

AIT invokes HTTP
REST API client
and downloads

Metadata records

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

100/179

A1

Provides BHL-
US Metadata

A5

Provides
EDM/ESE
Metadata

A3

Maps from
BHL-US to

BHL-E

KNOTEN: TITEL: NR.:BHL-E Data Flow with regards to BHL-US, BHL-E MODS Schema, EDM/ESE (AIT, 2010-09-07) v01A0

BHL-US
Metadata

OAI-PMH specifics for Europeana
http://version1.europeana.eu/web/

guest/technical-requirements/

Europeana Data Model /
Europeana Semantic Elements

http://version1.europeana.eu/web/
guest/technical-requirements/

HTTP REST API specification for BHL-US
http://www.biodiversitylibrary.org/api2/docs/

docs.html

BHL US
provides MODS and DC

Metadata via public API / OAI-
PMH Provider

http://biodivlib.wikispaces.com/
Developer+Tools+and+API

A6

Fetches EDM/
ESE Metadata

Records

A7

Displays
Metadata
Records

Europeana harvests
EDM/ESE metadata
records via OAI-PMH

Harvester

Europeana's own
webportal

design
specifications

AIT maps available
metadata fields from BHL-

US to BHL-E MODS
Schema and invokes data

mapping service

AIT operates an
OAI-PMH Provider
which makes EDM
metadata records

available for
harvesting

Europeana displays EDM/
ESE Metadata via

Europeana Webportal
(Europeana)

A2

Fetches BHL-
US Metadata

Records

AIT invokes HTTP
REST API client
and downloads

Metadata records

A4

Maps BHL-E
to EDM/ESE

AIT maps metadata fields
from BHL-E MODS to

Europeana EDM/ESE and
invokes data mapping

service

BHL-E MODS Schema
to be defined

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

101/179

A1

Provides BHL-
US Metadata

A5

Provides
EDM/ESE
Metadata

A3

Metadata
Gateway

KNOTEN: TITEL: NR.:BHL-E Data Flow with regards to BHL-US, Metadata Gateway, BHL-E MODS Schema, EDM/ESE (AIT, 2010-09-27) v01A0

BHL-US
Metadata

OAI-PMH specifics for Europeana
http://version1.europeana.eu/web/

guest/technical-requirements/

Europeana Data Model /
Europeana Semantic Elements

http://version1.europeana.eu/web/
guest/technical-requirements/

HTTP REST API specification for BHL-US
http://www.biodiversitylibrary.org/api2/docs/

docs.html

BHL US
provides MODS and DC

Metadata via public API / OAI-
PMH Provider

http://biodivlib.wikispaces.com/
Developer+Tools+and+API

A6

Fetches EDM/
ESE Metadata

Records

A7

Displays
Metadata
Records

Europeana harvests
EDM/ESE metadata
records via OAI-PMH

Harvester

Europeana's own
webportal

design
specifications

AIT invokes mapping
service on metadata

gateway which maps from
BHL-US to BHL-E MODS

Schema

AIT operates an
OAI-PMH Provider
which makes EDM
metadata records

available for
harvesting

Europeana displays EDM/
ESE Metadata via

Europeana Webportal
(Europeana)

A2

Fetches BHL-
US Metadata

Records

AIT invokes HTTP
REST API client
and downloads

Metadata records

A4

Maps BHL-E
to EDM/ESE

AIT maps metadata fields
from BHL-E MODS to

Europeana EDM/ESE and
invokes data mapping

service

BHL-E MODS Schema
to be defined

BHL-US Mapping Service
to be defined

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

102/179

7.2 BHL-US HTTP REST API Response for GetTitleMetadata()
 <?xml version="1.0" encoding="utf-8" ?>
- <Response xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Status>ok</Status>
- <Result>
 <TitleID>2</TitleID>
 <FullTitle>Examen classis dioeciae.</FullTitle>
 <ShortTitle>Examen classis dioeciae.</ShortTitle>
 <SortTitle>Examen classis dioeciae.</SortTitle>
 <CallNumber>QK91.C Add 830ab 1825</CallNumber>
 <Edition />
 <PublisherPlace>Upsaliæ :</PublisherPlace>
 <PublisherName>excudebant Palmblad et c.,</PublisherName>
 <PublicationDate>1825.</PublicationDate>
 <PublicationFrequency />
 <TitleUrl>http://www.biodiversitylibrary.org/bibliography/2</TitleUrl>
- <Authors>
- <Creator>
 <CreatorID>1106</CreatorID>
 <Name>East India Company.</Name>
 <Numeration />
 <Unit>Museum.</Unit>
 <Title />
 <Location />
 <Dates />
 </Creator>
- <Creator>
 <CreatorID>4</CreatorID>
 <Name>Fleischer, Max,</Name>
 <Numeration />
 <Unit />
 <Title />
 <Location />
 <Dates>1861-1930.</Dates>
 </Creator>
- <Creator>
 <CreatorID>3229</CreatorID>
 <Name>Kjellenberg, Fredrik Ulrik,</Name>
 <Numeration />
 <Unit />
 <Title />
 <Location />
 <Dates>1795-1862.</Dates>
 </Creator>
- <Creator>
 <CreatorID>3249</CreatorID>
 <Name>Söderberg, Christopher,</Name>
 <Numeration />
 <Unit />
 <Title />
 <Location />
 <Dates>1804-1833.</Dates>
 </Creator>

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

103/179

- <Creator>
 <CreatorID>108</CreatorID>
 <Name>Thunberg, Carl Peter,</Name>
 <Numeration />
 <Unit />
 <Title />
 <Location />
 <Dates>1743-1828.</Dates>
 </Creator>
- <Creator>
 <CreatorID>112</CreatorID>
 <Name>Wallich, N.</Name>
 <Numeration />
 <Unit />
 <Title />
 <Location />
 <Dates>1786-1854.</Dates>
 </Creator>
 </Authors>
+ <Subjects>
- <Identifiers>
+ <TitleIdentifier>
+ <TitleIdentifier>
+ <TitleIdentifier>
 </Identifiers>
- <Items>
- <Item>
 <ItemID>7</ItemID>
 <PrimaryTitleID>2</PrimaryTitleID>
 <ThumbnailPageID>600316</ThumbnailPageID>
 <Source>Botanicus</Source>
 <SourceIdentifier>31753002085667</SourceIdentifier>
 <Volume>v. 1 [series pt. 5]</Volume>
 <Contributor>Missouri Botanical Garden</Contributor>
 <Sponsor>Missouri Botanical Garden</Sponsor>
 <Language>Dutch</Language>
 <LicenseUrl />
 <Rights />
 <DueDiligence />
 <CopyrightStatus />
 <CopyrightRegion />
 <ItemUrl>http://www.biodiversitylibrary.org/item/7</ItemUrl>
 <TitleUrl>http://www.biodiversitylibrary.org/bibliography/2</TitleUrl>
 <ItemThumbUrl>http://www.biodiversitylibrary.org/pagethumb/600316</ItemThumbUrl>
 </Item>
+ <Item>
+ <Item>
+ <Item>
+ <Item>
 </Items>
 </Result>
 </Response>

7.3 Mapped metadata using the Europeana ESE schema
 <?xml version="1.0" encoding="utf-8" ?>
- <regnet-document version="1.0">
- <section name="ESE">

TechNote-ADDENDUM-DataFlow

AIT Forschungsgesellschaft mbH, 2010-09-27

104/179

 <ese-Title>Examen classis dioeciae.</ese-Title>
 <ese-Creator>East India Company.</ese-Creator>
 <ese-Creator>Fleischer, Max,</ese-Creator>
 <ese-Creator>Kjellenberg, Fredrik Ulrik,</ese-Creator>
 <ese-Creator>Söderberg, Christopher,</ese-Creator>
 <ese-Creator>Thunberg, Carl Peter,</ese-Creator>
 <ese-Creator>Wallich, N.</ese-Creator>
 <ese-Subject>(Nathaniel),</ese-Subject>
 <ese-Subject>1786-1854</ese-Subject>
 <ese-Subject>Australia</ese-Subject>
 <ese-Subject>Bogor</ese-Subject>
 <ese-Subject>China</ese-Subject>
 <ese-Subject>Dimorphism (Plants)</ese-Subject>
 <ese-Subject>Forests and forestry</ese-Subject>
 <ese-Subject>Herbarium</ese-Subject>
 <ese-Subject>India</ese-Subject>
 <ese-Subject>Indonesia</ese-Subject>
 <ese-Subject>Musci</ese-Subject>
 <ese-Subject>New Guinea</ese-Subject>
 <ese-Subject>Papau New Guinea</ese-Subject>
 <ese-Subject>Papua New Guinea</ese-Subject>
 <ese-Subject>Plants</ese-Subject>
 <ese-Subject>Wallich, N</ese-Subject>
 <ese-Publisher>excudebant Palmblad et c., Upsaliæ</ese-Publisher>
 <ese-Issued>1825.</ese-Issued>
- <ese-Issued encoding="dmEras">
 dmEras:/19th century CE
 <thesaurus_link level="1" id="dmEras:50039000" />
 </ese-Issued>
 <ese-Type>Text</ese-Type>
 <ese-Identifier>CallNumber: QK91.C Add 830ab 1825</ese-Identifier>
 <ese-Identifier>Abbreviation Musci Buitenzorg</ese-Identifier>
 <ese-Source>BHL US</ese-Source>
 <ese-HasVersion navigate="BHLUS:ITEMS/000000000007">Examen classis dioeciae. Volume
v. 1 [series pt. 5]</ese-HasVersion>
 <ese-HasVersion navigate="BHLUS:ITEMS/000000021856">Examen classis dioeciae.</ese-
HasVersion>
 <ese-HasVersion navigate="BHLUS:ITEMS/000000000008">Examen classis dioeciae. Volume
v. 2 [series pt. 5]</ese-HasVersion>
 <ese-HasVersion navigate="BHLUS:ITEMS/000000000009">Examen classis dioeciae. Volume
v. 3 [series pt. 5]</ese-HasVersion>
 <ese-HasVersion navigate="BHLUS:ITEMS/000000000010">Examen classis dioeciae. Volume
v. 4 [series pt. 5]</ese-HasVersion>
 <ese-IsShownAt>http://www.biodiversitylibrary.org/bibliography/2</ese-IsShownAt>
 </section>
- <section name="oaiInfo">
 <oai-Archive>BHLUS</oai-Archive>
 <oai-Set>BHLUS</oai-Set>
 <oai-Set>BHLUS:TITLES</oai-Set>
 <oai-InternalId>BHLUS:TITLES/000000000002</oai-InternalId>
 <oai-DateStamp>2010-09-09T10:09:19Z</oai-DateStamp>
 </section>
 </regnet-document>

105/179

III.V Technote: LOCKSS

Koch W.: “Proof of concept LOCKSS (1.Analysis)”, 2010-06-30

106/179

ECP-2008-DILI-518001

BHL-Europe

Technical Note

Proof of concept LOCKSS (1.Analysis)

Deliverable number TN-SPRINT1-106

Dissemination level Public

Delivery date 2010-06-30

Status Final

Author(s) Walter Koch

eContentplus

This project is funded under the eContentplus programme44,
a multiannual Community programme to make digital content in Europe more accessible, usable and exploitable.

44 OJ L 79, 24.3.2005, p. 1.

TN-SPRINT1-106

107/179

Table of contents

1 DOCUMENT HISTORY.. 108
1.1 CONTRIBUTORS .. 108
1.2 REVISION HISTORY... 108
1.3 DISTRIBUTION... 108

2 PURPOSE OF THIS DOCUMENT... 109

3 BACKGROUND AND CONTEXT.. 109
3.1 THE BHL-EUROPE-REQUIREMENT... 109
3.2 LOCKSS - LOTS OF COPIES KEEP STUFF SAFE... 110

4 PROPOSED APPROACH.. 110
4.1 LOCKSS AND THE BHL - ARCHITECTURE ... 110

5 ORGANISATIONAL AND TECHNICAL CONSIDERATIONS .. 111
5.1 TECHNICAL ISSUES ... 111

5.1.1 The LOCKSS-Box.. 112
5.2 ORGANISATIONAL ISSUES... 112

6 PROPOSED ACTIONS .. 113
6.1 CLARIFICATIONS NEEDED ... 113
6.2 ACTIONS ... 113

TN-SPRINT1-106

108/179

1 Document History

1.1 Contributors
A discussion about this issue was initiated and the following persons provided input that was
used for the present document.

Person Partner

Walter Koch AIT

1.2 Revision History

Revision Date Author Version Change Reference & Summary

2010-07-15 Walter Koch 0.1 1. Draft

2011-05-03 Chris Sleep Final Dissemination changed to public for D3.7

1.3 Distribution
This document has been distributed to:

Group Date of issue Version

BHL-Europe – technical group 2010-07-16 0.1

TN-SPRINT1-106

109/179

2 Purpose of this document
This document describes the first findings about a possible integration of the LOCKSS-
System (Lots of Copies Keep Stuff Safe) into the BHL-Europe System. It should provide a
basis for discussion whether it is useful to look deeper into this issue or stop the investigation
in this direction in favour of another solution, eg. Bittorrent.

3 Background and Context

3.1 The BHL-Europe -Requirement
The Global BHL System is based on the replication of the large amount of static data (whole
BHL data sets) in different regions (America/US, Europe/EU, Australia, Asia/China). There
are different methods to achieve this, eg using Bittorrent or LOCKSS-Boxes.

The high level architectural design as discussed in several technical meeting looks like this:
(https://bhl.wikispaces.com/BHL-E_WP3_ArchitectureDiagrams - visited: 2010-07-15)

The replication takes place in the middle light blue box (green cycle “B”) in the diagram
below. This component could be considered as being the aggregation platform which contains
data from all regions. Data belonging only to a region is included in the light blue block at the
bottom (grey cycle “P”).

B

P

TN-SPRINT1-106

110/179

3.2 LOCKSS - Lots of Copies Keep Stuff Safe
In the library world for several years a system for Distributed Digital Preservation has been
successfully developed, the LOCKSS System. The system “[…] provides an OAIS-compliant,
open source, peer-to-peer, decentralized digital preservation infrastructure. It is format-
agnostic, preserving all formats and genres of web-published content, provided the content
has an authoritative version.” (http://lockss.org/lockss/How_It_Works#Providing_Access ;
URL visited: 2010-07-15).

In an earlier publication of Vicky Reich (2001) the Data Flow in a LOCKSS based
distributed system looks like this (figure 1):

“Figure 1: In this example,
each LOCKSS cache (oval)
collects journal content
from the publisher's web
site as it is published.
Readers (circles) can get
content from the publisher
site. When the publisher's
web site is not available
(gray) to a local
community, readers from
that community get content
from their local institution's
cache. The caches "talk" to
each other to maintain the
content's integrity over
time.”

(http://www.dlib.org/dlib/june01/reich/06reich.html ; URL visited: 2010-07-15).

4 Proposed approach
Locking into the concepts behind LOCKSS and possible implication to the BHL-Europe
Project is only one option but will be further pursued in this document. All statements are
made on a first conceptual basis and have to be discussed in the appropriate BHL-Europe
groupings.

4.1 LOCKSS and the BHL - Architecture
Looking into paragraphs 3.1 and 3.2 it is assumed that on the “regional level” BHL-Europe
provides a regional (European) platform which aggregates content from European countries
and contributes this content to the global BHL System. This regional system will furtheron
called a “BHL-node”. A (the European) BHL-node consists of the two components labeled in
par. 3.1 with “P” (to be delivered by the EU-funded project) and “B” respectively. This node
interacts with the contributing archives (BHL-Europe -content providers) as well as with
“central components” like an ontology node, a “deduplication system” (GRIB), etc.

P
B

P

B

B

B

BHLE –
Regional
Node

TN-SPRINT1-106

111/179

Aligning this situation with the LOCKSS concept the BHL-Europe -component “P” could be
considered as a “publisher” in the LOCKSS environment and the component covering the
global BHL data set as a “LOCKSS-Box” containing the cached data from all other Boxes. A
“publisher-component” in this concept is responsible for all data generated on a regional level
and to be subscribed by the BHL-LOCKSS-Boxes and may be connected to a local
production and control system (eg: MetaArchive, PeDALS, or similar implementations of a
“PLN” – Private LOCKSS Network).

5 Organisational and Technical Considerations
Implementing a Private LOCKSS network one has to look into organisational and technical
requirements and constraints.

5.1 Technical Issues
The whole LOCKSS Software is available in the open source, the software licence is:

TN-SPRINT1-106

112/179

The software can be downloaded from: http://sourceforge.net/projects/lockss/ (URL visited:
2010-07-16. Note: the CD image was not the actual one used at that time). The source code is
available from: http://lockss.cvs.sourceforge.net/lockss/ and contains four components:

 The cache manager
 The lockss daemon
 The lockss platform
 The lockss-ui

The whole software was downloaded as GNU tarball and installed on virtual Ubuntu 10.04
box. There have been only minor problems compiling the whole stuff in this environment.

5.1.1 The LOCKSS-Box
The ISO-image which includes the platform and daemon has been downloaded from
http://www.lockss.org/release/lockssCD280.iso (URL visited: 2010-07-16) and installed as
virtual image on a Ubuntu-host machine. The installation needs no special expertise, is
straight forward and can be done within half an hour. A test box is now available and running
at: http://lockss.ait.co.at:8081/ (user/password: lockss/lockss).

5.2 Organisational Issues
There are some requirements for running a PLN:

 Members of a PLN have to be member of the LOCKSS-Alliance (annual fee up to
10.800 US$ per member, depends on organisation type)

 There must be a minimum number of partners (six) running a box in the network.

TN-SPRINT1-106

113/179

6 Proposed Actions
Before decision is taken to go ahead with this option (running a distributed BHL archive on
global level) some points have to be clarified:

6.1 Clarifications needed
1. Can the software be used without being member of the LOCKSS alliance (in case

there is no support needed) ?
2. If answer iy Yes – is it possible to get support via the German LuKII project (which

has to be agreed by the LOCKSS directors)
3. Can the software be used without any modifications (eg using a simple SIP like

defined for bagit)
4. Can a co-operation agreement be made with other PLN providers(eg MetaArchive).

6.2 Actions
1. Decide whether it is usefull to go ahead with the LOCKSS approach (Technical

Meeeting in London)
2. If Yes -> Clarify the points outlined in 6.1 (first contact with Prof.Michael Seadle

from the LuKII project has already been established). If No -> stop.
3. Setup a working group preparing the implementation of a PLN-like distributed

archival network and integration into the overall BHL architecture.

114/179

III.VI Technote: Fedora Commons

Namba L.: “BHL-Europe Fedora Commons Reference Documentation”, 2011-04

Composed of excerpts from documentation taken directly from the Fedora Commons website
(http://fedora-commons.org).

115/179

ECP-2008-DILI-518001

BHL-Europe

Technical Note

BHL-Europe Fedora Commons Reference
Documentation

Deliverable number TN-Addendum-Fedora

Dissemination level Public

Delivery date 2011-04

Status Final

Author(s) Lee Namba

eContentplus

This project is funded under the eContentplus programme45,
a multiannual Community programme to make digital content in Europe more accessible, usable and exploitable.

45 OJ L 79, 24.3.2005, p. 1.

116/179

Table of contents

1 DOCUMENT HISTORY.. 117
1.1 CONTRIBUTORS ... 117
1.2 REVISION HISTORY.. 117
1.3 DISTRIBUTION ... 117

2 PURPOSE OF THIS DOCUMENT... 118

3 INSTALLATION AND CONFIGURATION ... 118
3.1 INTRODUCTION.. 118
3.2 RUNNING THE FEDORA SERVER... 120
3.3 DATABASE... 120
3.4 CONFIGURING THE FEDORA SERVER ... 121

4 SERVICE ORIENTED ARCHITECTURE.. 122
4.1 CORE REPOSITORY SERVICE.. 122

5 FEDORA DIGITAL OBJECT MODEL ... 123
5.1 THE FEDORA DIGITAL OBJECT .. 123
5.2 THE FEDORA DIGITAL OBJECT MODEL ... 123
5.3 DATASTREAMS .. 124
5.4 DIGITAL OBJECT MODEL - ACCESS PERSPECTIVE ... 126
5.5 FOUR TYPES OF FEDORA DIGITAL OBJECTS .. 127

6 REST API... 133
6.1 API-A METHODS... 134
6.2 API-M METHODS .. 140
6.3 UTILITY METHODS .. 154

117/179

6 Document History

6.1 Contributors
This document is a reference document and is composed of excerpts from documentation
taken directly from the Fedora Commons website (http://fedora-commons.org).

Person Partner

Lee Namba ATOS

6.2 Revision History

Revision Date Author Version Change Reference & Summary

2011-04 Lee Namba 0.1 1. Draft

2011-05-03 Chris Sleep Final Dissemination changed to public for D3.7

6.3 Distribution
This document has been distributed to:

Group Date of issue Version

118/179

1 Purpose of this document
This document is a reference document and is composed of excerpts from documentation
taken directly from the Fedora Commons website (http://fedora-commons.org). We have
edited the relevant text as is applies to the BHL-Europe system.

It aims to aggregate the essential Fedora Commons documentation for developers and
maintainers of the BHL-Europe system.

2 Installation and Configuration

2.1 Introduction
This guide will show you how to install a new Fedora Repository using the installer, or from
source code.

2.1.1.1 Prerequisites

 Download Fedora 3.4.2

 Fedora 3.4.2 Installer (110M)
 Fedora 3.4.2 Source Code (14M)

Java SE Development Kit (JDK) 6.

Whether installing a binary or source distribution, JDK 6 is required. The JDK should be
installed on the machine you intend to use as the Fedora server. It is available from
http://java.sun.com/. Look here for more information on installing Java.

Database
Fedora uses a MySQL relational database to support some of its functions. To configure
Fedora to use the database, please see the Database section below for further instructions.

Application Server

The Fedora Repository installer includes Tomcat 6.0.20 which is used.

Maven 2
Fedora uses Maven for its build environment. Maven2 is available from
http://maven.apache.org/.

2.1.1.2 Prepare Environment Variables
The following environment variables must be correctly defined:

JAVA_HOME
This should point to the base directory of your Java installation. For UNIX derivatives, this
might be something like /usr/local/jdk1.6.0_17.

FEDORA_HOME
This is the directory where Fedora will be installed, for example, /usr/local/fedora (UNIX
derivatives). Note: This is only required when running the Fedora client command line
utilities. The server also requires this information at run time, but can accept it from the
following sources (listed in order of preference):

119/179

 The fedora.home init-param in the Fedora webapp's web.xml file (Fedora 3.2+ only).
The installer will automatically include the correct path in your web.xml at installation
time, so if you move your Fedora Home directory later, you will need to also modify
this file and restart the webapp container.

 The fedora.home system property, configured as appropriate for your web application
server of choice.

 The FEDORA_HOME environment variable, as available when the web application
server starts.

PATH
This must include the Java and Fedora bin directories. For UNIX derivatives, this will be
$FEDORA_HOME/server/bin, $FEDORA_HOME/client/bin and usually $JAVA_HOME/bin.

CATALINA_HOME
Fedora is configured to use Tomcat and CATALINA_HOME must be set before starting Fedora.
CATALINA_HOME should be set to $FEDORA_HOME/tomcat.

DISPLAY (Unix-only)
When running a Fedora server in a Unix-like operating system (Linux, Solaris, OS X, etc),
you should ensure that this environment variable is NOT set by the user who will be running
the application server in which Fedora is installed (e.g. Tomcat). Background: Fedora and the
included web applications are designed to run without access to a graphics output device.
Although rare, having this environment variable set has been reported to cause stability
problems in certain installations of Fedora. Since a graphic output device should never be
needed by the Fedora server, it is safest to ensure this environment variable is not set.

The Fedora Installer provides three installation options: quick, custom, and client. The
custom installer is used.

To start the installer, change to the directory where you downloaded the installer and at a
command prompt, enter:

java -jar fcrepo-installer-3.4.2.jar

Please ensure that the user account that is running the installer has sufficient permissions to
write to the directories where Fedora will be installed (if deploying to an existing Tomcat
installation, this includes permissions to the Tomcat directory). Installer created files will
usually be owned by the user running the installer. Consequently, for example, after
installation users of the Fedora Admin client will need write permissions to the log files
defined by FEDORA_HOME/client/log4j.xml.

2.1.1.3 Custom Install
The custom option provides the most flexibility in configuring an installation. Options include
the choice of servlet container, database, the host, ports and application server context Fedora
will be running on, enabling optional services, as well as security options including SSL,
XACML policy enforcement, and FeSL.

Servlet Container

The installer will automatically configure and deploy to Tomcat 5.0.x, 5.5.x, and 6.0.x servlet
containers. However, if an existing Tomcat installation (as opposed to the Tomcat bundled
with the installer) was selected, the installer will not overwrite your existing server.xml, but

120/179

rather, place a modified copy at FEDORA_HOME/install so that you may review it before
before installing it yourself.

Other servlet containers will require manual deployment of the war files located at
FEDORA_HOME/install.

Application Server Context

The installer provides the option to enter an application server context name under which
Fedora will be deployed. The context name defaults to Fedora (resulting in
http[s]://host:port/fedora), however any other valid context name can be supplied. The
installer will name the resulting war file according to the supplied context name (defaults to
fedora.war). Please ensure that the servlet container configuration reflects the name of the
Fedora context name in case it needs to be configured explicitly. For further details see
Alternative Webapp Context Configuration.

SSL

Configuring SSL support for Fedora's API-M interface is an optional feature. It strongly
recommended for production environments if Fedora is exposed to unsecured application and
users. However, since the BHL-Europe installation is within a managed data center with
firewall services, SSL will be provided with a reverse proxy implemented using the Apache
HTTP Server thus hiding Fedora and providing better SSL performance.

If the Tomcat servlet container is selected, the installer will configure server.xml for you.
However, as noted above, if an existing Tomcat installation was selected, the installer will not
overwrite your existing server.xml.

FeSL
Not used.

Resource Index

Not used.

Messaging
Not used.

2.1.1.4 Client Install
Both the quick and custom options will install the Fedora client software in addition to the
Fedora server. The client option, however, will install only the Fedora client software.

2.2 Running the Fedora Server
You will find Tomcat installed in FEDORA_HOME/tomcat. To run Fedora, start Tomcat by
entering:

$FEDORA_HOME/tomcat/bin/startup.sh

If you selected the custom install option, ensure that your database server is running.

2.3 Database
Fedora is designed to be RDBMS-independent. Fedora has been tested with Derby, McKoi,
MySQL, Oracle, PostgreSQL and Microsoft SQL Server. The embedded version of Derby
included with the installer is provided as a convenience; Derby is not recommended for use in
production repositories. If you choose to use any database other than the embedded Derby
provided by the Fedora Installer, you must install that database first.

121/179

Follow the instructions below for My SQL in order to create the user and tables required by
Fedora.

2.3.1.1 MySQL
Please note that the MySQL JDBC driver provided by the installer requires MySQL v3.23.x
or higher.

The MySQL commands listed below can be run within the mysql program, which may be
invoked as follows:

mysql -u root -p

Create the database. For example, to create a database named "fedora3", enter:
CREATE DATABASE fedora3;

Set username, password and permissions for the database. For example, to set the permissions
for user fedoraAdmin with password fedoraAdmin on database "fedora3", enter:

GRANT ALL ON fedora3.* TO fedoraAdmin@localhost IDENTIFIED BY 'fedoraAdmin';

GRANT ALL ON fedora3.* TO fedoraAdmin@'%' IDENTIFIED BY 'fedoraAdmin';

MySQL 4.1.x users must also specify the default character set for the Fedora database as
"utf8" and the default collation as "utf8_bin". For example, to set the default character set and
collation on a database named "fedora3", enter:

ALTER DATABASE fedora3 DEFAULT CHARACTER SET utf8;

ALTER DATABASE fedora3 DEFAULT COLLATE utf8_bin;

2.4 Configuring the Fedora Server

2.4.1.1 fedora.fcfg
The Fedora Server's configuration is chiefly governed by the Fedora Server Configuration
File, fedora.fcfg, located at FEDORA_HOME/server/config/fedora.fcfg.

The Fedora server configuration file contains:

 Global parameters for the Fedora server
 Configuration parameters for each server module
 Configuration parameters for each persistent data store

The configuration file has a simple schema. It starts with a server element, under which a
series of parameter elements occur, followed by a series of module elements, followed by a
series of datastore elements. The parameter elements directly following the root server
element are used to control what are considered generic server functionality; for example: the
port on which the server is exposed.

The module elements are used to configure specific parts of Fedora. For instance, the module
with the role attribute fedora.server.search.FieldSearch is used to configure the field-
searching component of the server. Inside the module element, several param elements are
included. These are specific to that module's implementation. Descriptions of each parameter
can currently be found in the configuration file itself.

122/179

The datastore elements are used to configure various databases that might be used by the
system. Although the sample configuration file holds several, you will typically only need
one. The datastore elements are associated with the modules by means of a parameter inside
the associated module. In the sample configuration file, for example, the poolNames
parameter of the fedora.server.storage.ConnectionPoolManager module refers to one
of the datastore elements in its value.

There are many other parameters you can configure with Fedora. Refer to the Fedora Server
Configuration File itself (fedora.fcfg) for internal documentation on all the parameters.

2.4.1.2 Logging in Fedora
Fedora uses the Simple Logging Facade for Java (SLF4J) framework for logging with
Logback as the actual logging implementation. For detailed information about using SLF4J,
consult the SLF4J Manual: http://www.slf4j.org/manual.html, and for information about using
Logback consult the Logback manual: http://logback.qos.ch/manual/index.html.

The log configuration file is located at FEDORA_HOME/server/config/logback.xml. One of
the benefits of using SLF4J and Logback is that configuration changes take effect without
needint to restart the server.

Normally, coarse-grained logs for Fedora are written to
FEDORA_HOME/server/logs/fedora.log. The following examples show the kinds of
configuration changes you can make to aid in debugging.

To change the level to DEBUG for all Fedora classes, change the logger

name="org.fcrepo" line to the following:

<logger name="org.fcrepo" additivity="false" level="DEBUG">

To change the level to DEBUG for just one class, add the following lines:
log4j.logger.fedora.server.utilities.SQLUtility = DEBUG, FEDORA

log4j.additivity.fedora.server.utilities.SQLUtility = false

To change the level to DEBUG for a whole package, add the following lines:
<logger name="org.fcrepo.server.resourceIndex" additivity="false" level="DEBUG">

<appender-ref ref="FEDORA"/>

3 Service Oriented Architecture

3.1 Core Repository Service
The Fedora Core Repository Service is run as a stand-alone service. The core repository can
be accessed via web service interfaces to its core functionality. The core repository service
actually has several web service APIs: an interface for repository management (API-M); an
interface for repository access (API-A); interface for basic repository search; and an interface
for RDF-based search of the Resource Index. All of these web service interfaces are available
on the Fedora repository server web application that runs in Tomcat. The repository service is
built in a modular manner, so that each inner function is implemented as a java-based module.
The inner modules are configurable, and they can be replaced with alternate implementations.

The Fedora repository service is the core service in the Fedora Service Framework. Below,
the Fedora repository service is depicted in more detail, with its inner modules exposed, and

123/179

all repository interfaces. The diagram depicts the repository service from the perspective of
how it maps to the Open Archival Information System (OAIS) reference model which has
been approved as an ISO standard.

4 Fedora Digital Object Model

4.1 The Fedora Digital Object
Fedora defines a generic digital object model that can be used to persist and deliver the
essential characteristics for many kinds of digital content including documents, images,
electronic books, multi-media learning objects, datasets, metadata and many others. This
digital object model is a fundamental building block of the Content Model Architecture and
all other Fedora-provided functionality.

4.2 The Fedora Digital Object Model
Fedora uses a "compound digital object" design which aggregates one or more content items
into the same digital object. Content items can be of any format and can either be stored
locally in the repository, or stored externally and just referenced by the digital object. The
Fedora digital object model is simple and flexible so that many different kinds of digital
objects can be created, yet the generic nature of the Fedora digital object allows all objects to
be managed in a consistent manner in a Fedora repository.

A good discussion of the Fedora digital object model (for Fedora 2 and prior versions) exists
in a recent paper (draft) published in the International Journal of Digital Libraries. While
some details of this paper have been made obsolete by the CMA (e.g. Disseminators), the core
principles of the model are still part of the CMA. The Fedora digital object model is defined
in XML schema language (see The Fedora Object XML - FOXML). For more information,
also see the Introduction to FOXML in the Fedora System Documentation.

124/179

The basic components of a Fedora digital object are:

 PID: A persistent, unique identifier for the object.
 Object Properties: A set of system-defined descriptive properties that are necessary to

manage and track the object in the repository.
 Datastream(s): The element in a Fedora digital object that represents a content item.

4.3 Datastreams
A Datastream is the element of a Fedora digital object that represents a content item. A
Fedora digital object can have one or more Datastreams. Each Datastream records useful
attributes about the content it represents such as the MIME-type (for Web compatibility) and,
optionally, the URI identifying the content's format (from a format registry). The content
represented by a Datastream is treated as an opaque bit stream; it is up to the user to
determine how to interpret the content (i.e. data or metadata). The content can either be stored
internally in the Fedora repository, or stored remotely (in which case Fedora holds a pointer to
the content in the form of a URL). The Fedora digital object model also supports versioning
of Datastream content (see the Fedora Versioning Guide for more information).

Each Datastream is given a Datastream Identifier which is unique within the digital object's
scope. Fedora reserves four Datastream Identifiers for its use, "DC", "AUDIT", "RELS-EXT"
and "RELS-INT". Every Fedora digital object has one "DC" (Dublin Core) Datastream by
default which is used to contain metadata about the object (and will be created automatically
if one is not provided). Fedora also maintains a special Datastream, "AUDIT", that records an
audit trail of all changes made to the object, and can not be edited since only the system
controls it. The "RELS-EXT" Datastream is primarily used to provide a consistent place to
describe relationships to other digital objects, and the "RELS-INT" datastream is used to
describe internal relationships from digital object datastreams. In addition, a Fedora digital
object may contain any number of custom Datastreams to represent user-defined content.

Decisions about what to include in a Fedora digital object and how to configure its
Datastreams are choices as you develop content for your repository. The examples in this
tutorial demonstrate some common models that you may find useful as you develop your
application. Different patterns of datastream designed around particular "genre" of digital
object (e.g., article, book, dataset, museum image, learning object) are known as "content
models" in Fedora.

125/179

The basic properties that the Fedora object model defines for a Datastream are as follows:

 Datastream Identifier: an identifier for the datastream that is unique within the
digital object (but not necessarily globally unique)

 State: the Datastream's state: Active, Inactive, or Deleted
 Created Date: the date/time that the Datastream was created (assigned by the

repository service)
 Modified Date: the date/time that the Datastream was modified (assigned by the

repository service)
 Versionable: an indicator (true/false) as to whether the repository service should

version the Datastream (by default the repository versions all Datastreams)
 Label: a descriptive label for the Datastream
 MIME Type: the MIME type of the Datastream (required)
 Format Identifier: an optional format identifier for the Datastream such as emerging

schemes like PRONOM and the Global Digital Format Registry (GDRF)
 Alternate Identifiers: one or more alternate identifiers for the Datastream (such

identifiers could be local identifiers or global identifiers such as Handles or DOI)
 Checksum: an integrity stamp for the Datastream content which can be calculated

using one of many standard algorithms (MD5, SHA-1, etc.)
 Bytestream Content: the content (as a stream resource) represented or encapsulated

by the Datastream (such as a document, digital image, video, metadata record)
 Control Group: the approach used by the Datastream to represent or encapsulate the

content as one of four types or control groups:
o Internal XML Content - the content is stored as XML in-line within the digital

object XML file
o Managed Content - the content is stored in the repository and the digital object

XML maintains an internal identifier that can be used to retrieve the content
from storage

126/179

o Externally Referenced Content - the content is stored outside the repository
and the digital object XML maintains a URL that can be dereferenced by the
repository to retrieve the content from a remote location. While the datastream
content is stored outside of the Fedora repository, at runtime, when an access
request for this type of datastream is made, the Fedora repository will use this
URL to get the content from its remote location, and the Fedora repository will
mediate access to the content. This means that behind the scenes, Fedora will
grab the content and stream in out the the client requesting the content as if it
were served up directly by Fedora. This is a good way to create digital objects
that point to distributed content, but still have the repository in charge of
serving it up.

o Redirect Referenced Content - the content is stored outside the repository and
the digital object XML maintains a URL that is used to redirect the client when
an access request is made. The content is not streamed through the repository.
This is beneficial when you want a digital object to have a Datastream that is
stored and served by some external service, and you want the repository to get
out of the way when it comes time to serve the content up. A good example is
when you want a Datastream to be content that is stored and served by a
streaming media server. In such a case, you would want to pass control to the
media server to actually stream the content to a client (e.g., video streaming),
rather than have Fedora in the middle re-streaming the content out.

4.4 Digital Object Model - Access Perspective
Below is an alternative view of a Fedora digital object that shows the object from an access
perspective. The digital object contains Datastreams and a set of object properties (simplified
for depiction) as described above. A set of access points are defined for the object using the
methods described below. Each access point is capable of disseminating a "representation" of
the digital object. A representation may be considered a defined expression of part or all of
the essential characteristics of the content. In many cases, direct dissemination of a bit stream
is the only required access method; in most repository products this is the only supported
access method. However, Fedora also supports disseminating virtual representations based on
the choices of content modelers and presenters using a full range of information and
processing resources. The diagram shows all the access points defined for our example object.

For the access perspective, it would be best if the internal structure of digital object is ignored
and treated as being encapsulated by its access points. Each access point is identified by a
URI that conforms to the Fedora "info" URI scheme . These URIs can be easily converted to
the URL syntax for the Fedora REST-based access service (API-A-LITE). It should be noted
that Fedora provides a several protocol-based APIs to access digital objects. These protocols
can be used both to access the representation and to obtain associated metadata at the same
access point.

127/179

By default, Fedora creates one access point for each Datastream to use for direct
dissemination of its content. The diagram shows how these access points map to the
Datastreams. The example object aggregates three Datastreams: a Dublin Core metadata
record, a thumbnail image, and a high resolution image. As shown, each Datastream is
accessed from a separate URI.

Custom access points are created using the Content Model Architecture by defining control
objects as described below. Behind the scenes, custom access points connect to services that
are called on by the repository to produce representations of the object. Custom access points
are capable of producing both virtual and direct representations (though they are likely to
provide slower performance). Content in the Datastreams may be used as input as well as
caller-provided parameters. A "virtual representation" is produced at runtime using any
resource the service can access in conjunction with content generated in its code. In this
example, there is one service that contains two operations, one for producing zoomable
images and one for producing grayscale images. These operations both require a jpeg image
as input, therefore the Datastream labeled "HIGH" is used by this service. Fedora will
generate one access point for each operation defined by the service. The control objects
contains enough information so that a Fedora repository can automatically mediate all
interactions with the associated service. The Fedora repository uses this information to make
appropriate service calls at run time to produce the virtual representation. From a client
perspective this is transparent; the client just requests a dissemination from the desired access
point.

4.5 Four Types of Fedora Digital Objects
Although every Fedora digital object conforms to the Fedora object model, as described
above, there are four distinct types of Fedora digital objects that can be stored in a Fedora
repository. The distinction between these four types is fundamental to how the Fedora
repository system works. In Fedora, there are objects that store digital content entities, objects

128/179

that store service descriptions, objects used to deploy services, and objects used to organize
other objects.

4.5.1.1 Data Object
In Fedora, a Data object is the type of object used to represent a digital content entity. Data
objects are what we normally think of when we imagine a repository storing digital
collections. Data objects can represent such varied entities as images, books, electronic texts,
learning objects, publications, datasets, and many other entities. One or more Datastreams are
used to represent the parts of the digital content. A Datastream is an XML element that
describes the raw content (a bitstream or external content). In the CMA, Disseminators, a
metadata construct used to represent services, are eliminated though their functionality is still
provided in other ways.

The Data object, indeed all Fedora digital objects, now consists of the FOXML digital object
encapsulation (foxml:digitalObject) and two fundamental XML elements: Object
Properties (foxml:objectProperties) and Datastreams (foxml:datastream). The Data
object is the simplest, most common of all the specialized object types and is identical to the
digital object described in the Fedora Digital Object Model section above.

Data objects can now be freely shared between Fedora repositories. If a federated identifier-
resolver system, such as the Handle System™, or any authoritative name registry system is
used, the Data object will have the same identifier for each copy of itself in each participating
repository. Sharing Data objects while keeping the same identifier in each copy greatly
simplifies replication, and enables many business processes and services that are needed for
large scale repository installations integrated within the Fedora Framework. Data objects can
still be shared between repositories by including both the original identifier and alternate
identifiers as part of the object's metadata.

4.5.1.2 Service Definition Object
In Fedora, a Service Definition object or SDef is a special type of control object used to store
a model of a Service. A Service contains an integrated set of Operations that a Data object
supports. In object-oriented programming terms, the SDef defines an "interface" which lists
the operations that are supported but does not define exactly how each operation is performed.
This is also similar to approaches used in Web (REST) programming and in SOAP Web
services. In order to execute an operation you need to identify the Data object, the SDef, and
the name of the Operation. Some Operations use content from Datastreams (supplied by the
Data object) and, possibly, additional parameters supplied by the client program or browser
requesting the execution.

129/179

Conceptually an Operation is called using the following form (the specifics vary with the
actual Fedora interface being used but all will contain some form of this information):

Repository : Get : Data object PID : SDef PID : Operation Name : Optional Parameters

A SDef is a building block in the CMA that enables adding customized functionality for Data
objects. Using a SDef is a way of saying "this Data object supports these operations."
Essentially, a SDef defines a "behavior contract" to which one or more Data objects may
"subscribe." In repositories, we usually create a large number of similar Data objects and want
them all to have the same functionality. To make this approach flexible and easier to use, the
CMA uses the Content Model (CModel) object (described below) to contain the model for
similar Data objects. Instead of associating the SDef directly with each Data object, the
relation hasService is asserted to the CModel object. By following the relation between the
Data object to the CModel object, and then from the CModel object to the SDef object, we
can determine what Operations the Data object can perform. Also note that a Data object
(through its CModel object) may support more than one Service (by having multiple SDef
relations).

SDef objects can now be freely shared between Fedora repositories. If a federated identifier-
resolver system, such as the Handle System™, or any authoritative name registry system is
used the SDef object will have the same identifier for each copy of itself in each participating
repository. Sharing SDef objects while keeping the same identifier in each copy greatly
simplifies replication, and enables many business processes and services that are needed for
large scale repository installations integrated within the Fedora Framework. SDef objects can
still be shared between repositories by including both the original identifier and alternate
identifiers as part of the object's metadata. The best results will be gained by sharing the Data
object, SDef objects, and Content Model object as a group maintaining the same original
identifiers. By using the CMA in this fashion, you transfer a significant unit of the data and
metadata that documents the expression pattern for your intellectual work. While this is, by
itself, not everything needed, it is a big step forward for creating a durable content repository.

It is worth noting that Service Definition objects conform to the basic Fedora object model.
Also, they are stored in a Fedora repository just like other Fedora objects. As such, a
collection of SDef objects in a repository constitutes a "registry" of Service Definitions.

130/179

4.5.1.3 Service Deployment Object
The Service Deployment object is a special type of control object that describes how a
specific repository will deliver the Service Operations described in a SDef for a class of Data
objects described in a CModel. The SDep is executable code but instead it contains
information that tells the Fedora repository how and where to execute the function that the
SDep represents. In the CMA, the SDep acts as a deployment object only for the specific
repository in which it is ingested; each repository is free to provide functionality in a different
way. For example, one Fedora repository may choose to use a Servlet and another may use a
SOAP Web service to perform the same function. As another example, individual repository
implementations may need to provide the functionality at different end points. Or perhaps, a
specific installation may use a dynamic end point resolution mechanism to permit failover to
different service providers.

Since the SDep operates only within the scope of an individual repository, the operators of
that repository are free to make changes to the SDep or the functionality it represents at any
time (except for temporarily making the object's services unavailable while the change is
being made). This approach permits the system operators to control access to services called
by the Fedora repository to institute security or policies as their organization determines. It
enables Fedora-called services to be managed using the same principles and tools for the
deployment of any distributed system. It also enables the system operators to reconfigure their
systems quickly without having to change any part of their content except the SDep object.

The SDep stores concrete service binding metadata. A SDep uses a isDeploymentOf relation
to a SDef as its way of saying "I am able to perform the service methods described by that
SDef." A SDep object is related to a SDef in the sense that it defines a particular concrete
implementation of the abstract operations defined in a SDef object. The SDef also uses a

131/179

isContractorOf relation to a CModel as a way of saying "Use me to do the service operations
for any Data objects conforming to that CModel."

A SDep object stores several forms of metadata that describe the runtime bindings for
invoking service methods. The most significant of these metadata formats is service binding
information encoded in the Web Services Description Language (WSDL). The Fedora
repository system uses the WSDL at runtime to dispatch service method requests in fulfilling
client requests for "virtual representations" of a Data object (i.e., via its Operations). This
enables Fedora to talk to a variety of different services in a predictable and standard manner.
A SDep also contains metadata that defines a "data contract" between the service and a class
of Fedora Data objects as defined in the CModel. For the initial deployment of the CMA a
simple data contract mechanism was chosen. Since the Datastream IDs are specified in the
CModel and the SDep is now a deployment control object only for a specific repository, the
SDep is able to uniformly bind directly to these IDs. In the future a more abstract binding
mechanism may be used but this approach is simple and clear, though it may require the
creation of a small number of additional SDep objects.

A major aspect of the CMA redesign is that there is no requirement that conformance to a
Content Model or that referential integrity between objects be checked at ingest time. This
may result in a run-time error if the repository cannot find referenced objects, interpret the
Content Model or if there are any conformance problems.

It is worth noting that SDep objects conform to the basic Fedora object model. Also, they are
stored in a Fedora repository just like other Fedora objects. As such, a collection of SDep
objects in a repository constitutes a "registry" of service deployments that can be used with
Fedora objects. In the CMA, SDep objects are not freely sharable across repositories. They
represent how a specific repository implements a service. However, SDep objects can be
shared if the operator of the system modifies them for local deployment. Because of this,
SDep objects should not be automatically replicated between repositories without considering
the affect.

4.5.1.4 Content Model Object
The Content Model object or CModel is a new specialized control object introduced as part of
the CMA. It acts as a container for the Content Model document which is a formal model that
characterizes a class of digital objects. It can also provide a model of the relationships which
are permitted, excluded, or required between groups of digital objects. All digital objects in
Fedora including Data, SDef, SDep, and CModel objects are organized into classes by the
CModel object. In this section, we will primarily discuss the relationship between the Data
and CModel objects.

To create a class of Data objects, create a CModel object. Each Data object belonging to the
class asserts the relation hasModel using the identifier of the CModel as the object of the
assertion. The current CModel object contains a structural model of the Data object. Over
time there will be additional elements to the Content Model document but this initial
implementation is sufficient to describe the Datastreams which are required to be present in
each Data object in the class. The other key relation is to the SDef objects. You can assert
zero or more hasService relations in the CModel to SDef objects.

A Data object may assert a hasModel relationship to multiple CModel objects. Such a Data
object should conform to all of its Content Models, containing an aggregation of all the
Datastreams defined by the Content Models. If two or more Content Models define
Datastreams which have the same name but different characteristics, no well-formed Data

132/179

object can be constructed and likely the repository will be unable to deliver its content or
services. Fedora automatically assumes that all objects conform to a system-defined "Basic
Content Model." There is no need to assert a relation to this content model explicitly but, if
the Data object asserts other relations, it is a good practice to make the assertion to the Basic
Content Model explicit. Regardless, the repository will behave the same whether the relation
is asserted or not. Along with the Basic Content Model, the repository defines a "Basic
Service Definition" which supplies Operations common to all objects. One such service
provides direct access to the Datastreams.

Because of the Basic Content Model and the Basic Service Definition, nothing needs to be
added to a Data object if the user only wants to store and disseminate Datastreams by name.
However, without an explicit Content Model you cannot validate whether the Data object is
correctly formed. In the CMA, if the repository cannot find and interpret all the control
objects related to a Data object, or cannot interpret the Content Model, it will issue a runtime
error when the Data object is accessed. Note that the repository will always be able to able to
perform basic Datastream operations because they are a part of the Basic Content Model and
Basic Service Definition. Other than conformance to the rules for a properly formed digital
object, there is no warning or error issued on ingest or modification of an object in the CMA.

CModel objects can now be freely shared between Fedora repositories. If a federated
identifier-resolver system, such as the Handle System™, or any authoritative name registry
system is used the CModel object will have the same identifier for each copy of itself in each
participating repository. Sharing CModel objects while keeping the same identifier in each
copy greatly simplifies replication, and enables many business processes and services that are
needed for large scale repository installations integrated within the Fedora Framework.
CModel objects can still be shared between repositories by including both the original
identifier and alternate identifiers as part of the object's metadata. The best results will be
gained by sharing the Data object, SDef objects, and CModel objects as a group maintaining
the same original identifiers. By using the CMA in this fashion, you transfer a significant unit
of the data and metadata that documents the expression pattern for your intellectual work.
While this is, by itself, not everything needed, it is a big step forward for creating a durable
content repository. Over time, Content Model languages can be developed that permit

133/179

describing an ever larger portion of the essential characteristics of the content and its
behaviors.

It is worth noting that Content Model objects conform to the basic Fedora object model. Also,
they are stored in a Fedora repository just like other Fedora objects. As such, a collection of
Content Model objects in a repository constitutes a "registry" of Content Models.

5 REST API
The Fedora REST API exposes a subset of the Fedora Access and Management APIs as a
RESTful (Representational State Transfer) Web Service.

For examples of how to use the REST API programmatically, please refer to the
TestRESTAPI test class.

 Ensure DC, RELS-EXT and RELS-INT are versionable if using Managed Content
Due to an outstanding bug FCREPO-849, if you use Managed Content for DC, RELS-EXT
or RELS-INT then please make sure these datastreams are versionable (the default setting
for versionable is "true", so if you haven't specified this datastream property then you are
safe). Ensure that you don't inadvertently set this property to "false" for these datastreams
when using the API methods.

 2xx Responses only please
The HTTP Response portion of each method description listed below indicates the
response on success. Unsuccessful calls will produce non-200 response codes appropriate
to the error case. If, however, your client software has difficulty processing non-200
responses (such as is the case with Adobe's Flash Player) adding the query parameter
'flash=true' to any method will ensure that all responses are in the 200 range. In the event
of an error, the response code will be set to 200 and the response body will include the
error message followed by "::ERROR".

 POST Replacement
If the client with which you are working does not support use of the PUT and/or DELETE
HTTP methods but does allow you to set headers on the HTTP request, you can use POST
replacement to make PUT and DELETE calls. To do this, simply set the X-HTTP-Method-
Override request header to the correct method value (PUT or DELETE) and perform a
POST request. Your request will be handled by the REST API as if it were a PUT or
DELETE.

 Removal of .xml shortcut
For release 3.3 the .xml shortcut has entirely been removed from the REST API due to
functional inconsistencies (see here for more details. If your client uses this shortcut please
change it to use the format parameter (?format=xml).

 URL-Encoding
The REST API requires that parameters - including path parameters - are URL-encoded.
Particularly this is important if you have any PIDs that use escaped-octets in the PID
name. In this case the "%" character should be URL-encoded as "%25", eg a PID
"changeme:1234%2F56" should be URL-encoded as "changeme:1234%252F56". The ":"
PID namespace separator character does not require URL-encoding as it has no special
meaning when used in the path component of HTTP URIs; however some software library
URL-encoding methods will URL-encode this to %3A - that's not a problem, both ":" and
"%3A" will be accepted by the REST API.

134/179

5.1 API-A Methods

5.1.1.1 describeRepository
Not implemented

5.1.1.2 findObjects
URL Syntax

/objects ? [terms | query] [maxResults] [resultFormat] [pid] [label] [state] [ownerId] [cDate]
[mDate] [dcmDate] [title] [creator] [subject] [description] [publisher] [contributor] [date]
[type] [format] [identifier] [source] [language] [relation] [coverage] [rights]

HTTP Method

GET

HTTP Response

200

Parameters

Name Description Default Options
terms a phrase represented as a sequence of characters

(including the ? and * wildcards) for the search. If this
sequence is found in any of the fields for an object, the
object is considered a match. Do NOT use this
parameter in combination with the "query" parameter

query a sequence of space-separated conditions. A condition
consists of a metadata element name followed directly
by an operator, followed directly by a value. Valid
element names are (pid, label, state, ownerId, cDate,
mDate, dcmDate, title, creator, subject, description,
publisher, contributor, date, type, format, identifier,
source, language, relation, coverage, rights). Valid
operators are: contains (), equals (=), greater than (>), less than (<),

greater than or equals (>=), less than or equals (<=). The contains () operator
may be used in combination with the ? and * wildcards
to query for simple string patterns. Space-separators
should be encoded in the URL as %20. Operators must
be encoded when used in the URL syntax as follows: the
(=) operator must be encoded as %3D, the (>) operator
as %3E, the (<) operator as %3C, the (>=) operator as
%3E%3D, the (<=) operator as %3C%3D, and the (~)
operator as %7E. Values may be any string. If the string
contains a space, the value should begin and end with a
single quote character ('). If all conditions are met for an
object, the object is considered a match. Do NOT use
this parameter in combination with the "terms"
parameter

maxResults the maximum number of results that the server should
provide at once. If this is unspecified, the server will

25

135/179

default to a small value
resultFormat the preferred output format html xml,

html
pid if true, the Fedora persistent identifier (PID) element of

matching objects will be included in the response
false true,

false
label if true, the Fedora object label element of matching

objects will be included in the response
false true,

false
state if true, the Fedora object state element of matching

objects will be included in the response
false true,

false
ownerId if true, each matching objects' owner id will be included

in the responsefalsetrue, false
false true,

false
cDate if true, the Fedora create date element of matching

objects will be included in the response
false true,

false
mDate if true, the Fedora modified date of matching objects

will be included in the response
false true,

false
dcmDate if true, the Dublin Core modified date element(s) of

matching objects will be included in the response
false true,

false
title if true, the Dublin Core title element(s) of matching

objects will be included in the response
false true,

false
creator if true, the Dublin Core creator element(s) of matching

objects will be included in the response
false true,

false
subject if true, the Dublin Core subject element(s) of matching

objects will be included in the response
false true,

false
description if true, the Dublin Core description element(s) of

matching objects will be included in the response
false true,

false
publisher if true, the Dublin Core publisher element(s) of

matching objects will be included in the response
false true,

false
contributor if true, the Dublin Core contributor element(s) of

matching objects will be included in the response
false true,

false
date if true, the Dublin Core date element(s) of matching

objects will be included in the response
false true,

false
type if true, the Dublin Core type element(s) of matching

objects will be included in the response
false true,

false
format if true, the Dublin Core format element(s) of matching

objects will be included in the response
false true,

false
identifier if true, the Dublin Core identifier element(s) of

matching objects will be included in the response
false true,

false
source if true, the Dublin Core source element(s) of matching

objects will be included in the response
false true,

false
language if true, the Dublin Core language element(s) of matching

objects will be included in the response
false true,

false
relation if true, the Dublin Core relation element(s) of matching

objects will be included in the response
false true,

false
coverage if true, the Dublin Core coverage element(s) of matching

objects will be included in the response
false true,

false
rights if true, the Dublin Core rights element(s) of matching

objects will be included in the response
false true,

false

136/179

Examples

/objects?terms=demo&pid=true&subject=true&label=true&resultFormat=xml

/objects?query=title%7Erome%20creator%7Estaples&pid=true&title=true&creator=true

/objects?query=pid%7E*1&maxResults=50&format=true&pid=true&title=true

5.1.1.3 getDatastreamDissemination
URL Syntax

/objects/{pid}/datastreams/{dsID}/content ? [asOfDateTime] [download]

HTTP Method

GET

HTTP Response

200

Parameters

Name Description Default Options
{pid} persistent identifier of the digital object
{dsID} datastream identifier
asOfDateTime indicates that the result should be relative to

the digital object as it existed at the given
date and time

 yyyy-MM-dd or
yyyy-MM-
ddTHH:mm:ssZ

download If true, a content-disposition header value
"attachment" will be included in the response,
prompting the user to save the datastream as
a file. A content-disposition header value
"inline" will be used otherwise. The filename
used in the header is generated by examining
in order: RELS-INT for the relationship
fedora-model:downloadFilename, the
datastream label, and the datastream ID. The
file extension (apart from where the filename
is specified in RELS-INT) is determined
from the MIMETYPE. The order in which
these filename sources are searched, and
whether or not to generate an extension from
the MIMETYPE, is configured in
fedora.fcfg. The file used to map between
MIMETYPEs and extensions is mime-to-
extensions.xml located in the server config
directory.

Examples

/objects/demo:29/datastreams/DC/content

/objects/demo:29/datastreams/DC/content?asOfDateTime=2008-01-01

137/179

5.1.1.4 getDissemination
URL Syntax

/objects/{pid}/methods/{sdefPid}/{method} ? [method parameters]

HTTP Method

GET

HTTP Response

200

Parameters

Name Description Default Options
{pid} persistent identifier of the digital object
{sdefPid} persistent identifier of the sDef defining the

methods

{method} method to invoke
method
parameters

any parameters required by the method

Examples

/objects/demo:29/methods/demo:27/resizeImage?width=100

/objects/demo:SmileyEarring/methods/demo:DualResolution/fullSize

5.1.1.5 getObjectHistory
URL Syntax

/objects/{pid}/versions ? [format]

HTTP Method

GET

HTTP Response

200

Parameters

Name Description Default Options
{pid} persistent identifier of the digital object
format the preferred output format html xml, html
Examples

/objects/demo:29/versions

/objects/demo:29/versions?format=xml

5.1.1.6 getObjectProfile
URL Syntax

/objects/{pid} ? [format] [asOfDateTime]

HTTP Method

GET

138/179

HTTP Response

200

Parameters

Name Description Default Options
{pid} persistent identifier of the digital

object

format the preferred output format html xml, html
asOfDateTime indicates that the result should be

relative to the digital object as it
existed on the given date

 yyyy-MM-dd or yyyy-
MM-ddTHH:mm:ssZ

Examples

/objects/demo:29

/objects/demo:29?format=xml

/objects/demo:29?asOfDateTime=2008-01-01

5.1.1.7 listDatastreams
URL Syntax

/objects/{pid}/datastreams ? [format] [asOfDateTime]

HTTP Method

GET

HTTP Response

200

Parameters

Name Description Default Options
{pid} persistent identifier of the digital

object

format the preferred output format html xml, html
asOfDateTime indicates that the result should be

relative to the digital object as it
existed on the given date

 yyyy-MM-dd or yyyy-
MM-ddTHH:mm:ssZ

Examples

/objects/demo:35/datastreams

/objects/demo:35/datastreams?format=xml&asOfDateTime=2008-01-01T05:15:00Z

5.1.1.8 listMethods
URL Syntax

1. /objects/{pid}/methods ? [format] [asOfDateTime]
2. /objects/{pid}/methods/{sdefPid} ? [format] [asOfDateTime]

HTTP Method

GET

139/179

HTTP Response

200

Parameters

Name Description Default Options
{pid} persistent identifier of the digital

object

{sdefPid} persistent identifier of the SDef
defining the methods

format the preferred output format html xml, html
asOfDateTime indicates that the result should be

relative to the digital object as it
existed on the given date

 yyyy-MM-dd or yyyy-
MM-ddTHH:mm:ssZ

Examples

/objects/demo:29/methods

/objects/demo:29/methods?format=xml&asOfDateTime=2008-01-01T05:15:00Z

/objects/demo:29/methods/demo:27

/objects/demo:29/methods/demo:27?format=xml&asOfDateTime=2008-01-01T05:15:00Z

5.1.1.9 resumeFindObjects
URL Syntax

/objects ? [sessionToken] [all findObjects options]

HTTP Method

GET

HTTP Response

200

Parameters

Name Description Default Options
sessionToken the identifier of the session to which the search

results are being returned

all findObjects
options

all of the same options are available for
resumeFindObjects as for findObjects

Examples

/objects?terms=*&format=xml&pid=true&subject=true&label=true&sessionToken=xyz\\\\

140/179

5.2 API-M Methods

5.2.1.1 addDatastream
URL Syntax

/objects/{pid}/datastreams/{dsID} ? [controlGroup] [dsLocation] [altIDs] [dsLabel]
[versionable] [dsState] [formatURI] [checksumType] [checksum] [mimeType] [logMessage]

HTTP Method

POST

HTTP Response

201

Parameters

Name Description Default Options
{pid} persistent identifier of the

digital object

{dsID} datastream identifier
controlGroup one of "X", "M", "R", or "E"

(Inline *X*ML, *M*anaged
Content, *R*edirect, or
*E*xternal Referenced)

X X, M, R, E

dsLocation location of managed or
external datastream content

altIDs alternate identifiers for the
datastream

dsLabel the label for the datastream
versionable enable versioning of the

datastream
true true, false

dsState one of "A", "I", "D" (*A*ctive,
*I*nactive, *D*eleted)

A A, I, D

formatURI the format URI of the
datastream

checksumType the algorithm used to compute
the checksum

DEFAULT DEFAULT,
DISABLED, MD5,
SHA-1, SHA-256, SHA-
385, SHA-512

checksum the value of the checksum
represented as a hexadecimal
string

mimeType the MIME type of the content
being added, this overrides the
Content-Type request header

logMessage a message describing the
activity being performed

multipart file as
request content

datastream file (for Managed
datastreams)

141/179

Examples

POST: /objects/demo:29/datastreams/NEWDS?controlGroup=X&dsLabel=New (with
Multipart file)

POST:
/objects/demo:29/datastreams/NEWDS?controlGroup=M&dsLocation=http://example:80/new
ds&dsLabel=New

5.2.1.2 addRelationship
URL Syntax

/objects/{pid}/relationships/new ? [subject] [predicate] [object] [isLiteral] [datatype]

HTTP Method

POST

HTTP Response

200

Parameters

Name Description Default Options
{pid} persistent identifier of the digital object
subject subject of the relationship. Either a URI for the object

or one of its datastreams
URI of this
object

predicate predicate of the relationship
object object of the relationship
isLiteral true if the object of the relationship is a literal, false if

it is a URI
 true,

false
datatype if the object is a literal, the datatype of the literal

(optional)

Examples

POST
/objects/demo:29/relationships/new?subject=info%3afedora%2fdemo%3a29%2fDC&predicat
e=http%3a%2f%2fwww.example.org%2frels%2fname&object=dublin%20core&isLiteral=tru
e

5.2.1.3 compareDatastreamChecksum
See getDatastream

5.2.1.4 export
URL Syntax

/objects/{pid}/export ? [format] [context] [encoding]

HTTP Method

GET

HTTP Response

200

142/179

Parameters

Name Description Default Options
{pid} persistent

identifier of the
digital object

format the XML format
to export

info:fedora/fedora-
system:FOXML-
1.1

info:fedora/fedora-system:FOXML-1.1,
info:fedora/fedora-system:FOXML-1.0,
info:fedora/fedora-
system:METSFedoraExt-1.1,
info:fedora/fedora-
system:METSFedoraExt-1.0,
info:fedora/fedora-system:ATOM-1.1,
info:fedora/fedora-system:ATOMZip-
1.1

context the export
context, which
determines how
datastream
URLs and
content are
represented

public public, migrate, archive

encoding the preferred
encoding of the
exported XML

UTF-8

Examples

/objects/demo:29/export

/objects/demo:29/export?context=migrate

5.2.1.5 getDatastream
URL Syntax

/objects/{pid}/datastreams/{dsID} ? [asOfDateTime] [format] [validateChecksum]

HTTP Method

GET

HTTP Response

200

Parameters

Name Description Default Options
{pid} persistent identifier of the digital

object

{dsID} datastream identifier
format the preferred output format html xml, html
asOfDateTime indicates that the result should be

relative to the digital object as it
 yyyy-MM-dd or

yyyy-MM-

143/179

existed on the given date ddTHH:mm:ssZ
validateChecksum verifies that the Datastream content

has not changed since the checksum
was initially computed. If
asOfDateTime is null, Fedora will use
the most recent version.

false true, false

Examples

/objects/demo:29/datastreams/DC

/objects/demo:29/datastreams/DC?format=xml

/objects/demo:29/datastreams/DC?format=xml&validateChecksum=true

5.2.1.6 getDatastreamHistory
URL Syntax

/objects/{pid}/datastreams/{dsid}/versions ? [format]

HTTP Method

GET

HTTP Response

200

Parameters

Name Description Default Options
format the preferred output format html xml, html
Examples

GET: /objects/changeme:1/datastreams/DC/versions

GET: /objects/changeme:1/datastreams/DC/versions?format=xml

5.2.1.7 getDatastreams
Not implemented

5.2.1.8 getNextPID
URL Syntax

/objects/nextPID ? [numPIDs] [namespace] [format]

HTTP Method

POST

HTTP Response

200

Parameters

Name Description Default Options
numPIDs the number of pids to retrieve 1
namespace the namespace of the requested

pid(s)
the default namespace of the
repository

144/179

format the preferred output format html xml,
html

Examples

POST: /objects/nextPID

POST: /objects/nextPID?numPIDs=5&namespace=test&format=xml

5.2.1.9 getObjectXML
URL Syntax

/objects/{pid}/objectXML

HTTP Method

GET

HTTP Response

200

Parameters

Name Description Default Options
{pid} persistent identifier of the digital object
Examples

/objects/demo:29/objectXML

5.2.1.10 getRelationships
URL Syntax

/objects/{pid}/relationships ? [subject] [predicate] [format]

HTTP Method

GET

HTTP Response

200

Parameters

Name Description Default Options
{pid} persistent identifier of the digital object
subject subject of the relationship(s). Either a

URI for the object or one of its
datastreams

URI of this
object

predicate predicate of the relationship(s), if
missing returns all predicates

format format of the response rdf/xml xml (returns rdf/xml),
rdf/xml, n-triples, turtle,
sparql

Examples

/objects/demo:29/relationships

/objects/demo:29/relationships?subject=info%3afedora%2fdemo%3a29%2fDC

145/179

5.2.1.11 ingest
URL Syntax

/objects/ [{pid}| new] ? [label] [format] [encoding] [namespace] [ownerId] [logMessage]
[ignoreMime]

HTTP Method

POST

HTTP Response

201

Request Content

text/xml

Parameters

Name Description Default Options
{pid} persistent identifier of the

object to be created
new (see below)

new indicator that either a new
PID should be created for
this object or that the PID
to be used is encoded in the
XML included as the body
of the request

label the label of the new object
format the XML format of the

object to be ingested
info:fedora/fedora-system:FOXML-
1.1, info:fedora/fedora-
system:FOXML-1.0,
info:fedora/fedora-
system:METSFedoraExt-1.1,
info:fedora/fedora-
system:METSFedoraExt-1.0,
info:fedora/fedora-system:ATOM-
1.1, info:fedora/fedora-
system:ATOMZip-1.1

encoding the encoding of the XML to
be ingested. If this is
specified, and given as
anything other than UTF-8,
you must ensure that the
same encoding is declared
in the XML. For example,
if you specify "ISO-88591"
as the encoding, the XML
should start with:
<?xml version="1.0"
encoding="ISO-8859-1"?>

UTF-8

namespace the namespace to be used to the default namespace of the

146/179

create a PID for a new
empty object; if object
XML is included with the
request, the namespace
parameter is ignored

repository

ownerId the id of the user to be
listed at the object owner

logMessage a message describing the
activity being performed

ignoreMime indicates that the request
should not be checked to
ensure that the content is
XML prior to attempting an
ingest. This is provided to
allow for client applications
which do not indicate the
correct Content-Type when
submitting a request.

false true,
false

XML file as
request
content

file to be ingested as a new
object

Notes

Executing this request with no request content will result in the creation of a new, empty
object (with either the specified PID or a system-assigned PID). The new object will contain
only a minimal DC datastream specifying the dc:identifier of the object.

Examples

POST: /objects/new

POST: /objects

POST: /objects/new?namespace=demo

POST: /objects/test:100?label=Test

5.2.1.12 modifyDatastream
URL Syntax

/objects/{pid}/datastreams/{dsID} ? [dsLocation] [altIDs] [dsLabel] [versionable] [dsState]
[formatURI] [checksumType] [checksum] [mimeType] [logMessage] [ignoreContent]
[lastModifiedDate]

HTTP Method

PUT

HTTP Response

200

Parameters

147/179

Name Description Default Options
{pid} persistent identifier of the digital

object

{dsID} datastream identifier
dsLocation location of datastream content
altIDs alternate identifiers for the

datastream

dsLabel the label for the datastream
versionable enable versioning of the

datastream
the
"versionable"
property of the
existing
datastream

true, false

dsState one of "A", "I", "D" (*A*ctive,
*I*nactive, *D*eleted)

A A, I, D

formatURI the format URI of the datastream
checksumType the algorithm used to compute

the checksum
DEFAULT DEFAULT,

DISABLED,
MD5, SHA-1,
SHA-256, SHA-
385, SHA-512

checksum the value of the checksum
represented as a hexadecimal
string

mimeType the MIME type of the content
being added, this overrides the
Content-Type request header

logMessage a message describing the activity
being performed

ignoreContent tells the request handler to ignore
any content included as part of
the request, indicating that you
do not intend to update the
datasteam content. This is
primarily provided to allow the
use of client tools which always
require content to be included as
part of PUT requests.

false true, false

lastModifiedDate date/time of the last (known)
modification to the datastream, if
the actual last modified date is
later, a 409 response is returned

multipart file as
request content

file to replace existing
datastream (for Managed
datastreams)

148/179

Examples

PUT: /objects/demo:35/datastreams/HIGH (with Multipart file)

PUT:
/objects/demo:35/datastreams/HIGH?dsLocation=http://example:80/highDS?logMessage=Up
date

5.2.1.13 modifyObject
URL Syntax

/objects/{pid} ? [label] [ownerId] [state] [logMessage] [\lastModifiedDate]

HTTP Method

PUT

HTTP Response

200

Parameters

Name Description Default Options
{pid} persistent identifier of the digital object
label the new object label
ownerId the id of the user to be listed at the object owner
state the new object state - *A*ctive, *I*nactive, or

*D*eleted
A A, I, D

logMessage a message describing the activity being performed
lastModifiedDate date/time of the last (known) modification to the

datastream, if the actual last modified date is later, a
409 response is returned

Examples

PUT: /objects/demo:29?label=Updated

PUT: /objects/demo:29?state=D?logMessage=Deleted

5.2.1.14 purgeDatastream
URL Syntax

/objects/{pid}/datastreams/{dsID} ? [startDT] [endDT] [logMessage]

HTTP Method

DELETE

HTTP Response

200 with a string array of the date-time stamps of the versions purged

Parameters

Name Description Default Options
{pid} persistent identifier of the digital object
{dsID} datastream identifier
startDT the (inclusive) start date-time stamp of the yyyy-MM-dd or

149/179

range. If not specified, this is taken to be the
lowest possible value, and thus, the entire
version history up to the endDT will be
purged

yyyy-MM-
ddTHH:mm:ssZ

endDT the (inclusive) ending date-time stamp of the
range. If not specified, this is taken to be the
greatest possible value, and thus, the entire
version history back to the startDT will be
purged

 yyyy-MM-dd or
yyyy-MM-
ddTHH:mm:ssZ

logMessage a message describing the activity being
performed

Examples

DELETE: /objects/demo:35/datastreams/HIGH

5.2.1.15 purgeObject
URL Syntax

/objects/{pid} ? [logMessage]

HTTP Method

DELETE

HTTP Response

204

Parameters

Name Description Default Options
{pid} persistent identifier of the digital object
logMessage a message describing the activity being performed
Examples

DELETE: /objects/demo:29

5.2.1.16 purgeRelationship
URL Syntax

/objects/{pid}/relationships ? [subject] [predicate] [object] [isLiteral] [datatype]

HTTP Method

DELETE

HTTP Response

200

Return body

Text indicating if the relationship was successfully purged: true or false

Parameters

150/179

Name Description Default Options
{pid} persistent identifier of the digital object
subject subject of the relationship. Either a URI for the object

or one of its datastreams
URI of this
object

predicate predicate of the relationship
object object of the relationship
isLiteral true if the object of the relationship is a literal, false if

it is a URI
 true,

false
datatype if the object is a literal, the datatype of the literal

(optional)

Examples

DELETE
/objects/demo:29/relationships?subject=info%3afedora%2fdemo%3a29%2fDC&predicate=ht
tp%3a%2f%2fwww.example.org%2frels%2fname&object=dublin%20core&isLiteral=true

5.2.1.17 setDatastreamState
URL Syntax

/objects/{pid}/datastreams/{dsID} ? [dsState]

HTTP Method

PUT

HTTP Response

200

Parameters

Name Description Default Options
{pid} persistent identifier of the digital object
{dsID} datastream identifier
dsState one of "A", "I", "D" (*A*ctive, *I*nactive, *D*eleted) A A, I, D
Examples

PUT: /objects/demo:35/datastreams/HIGH?dsState=D

5.2.1.18 setDatastreamVersionable
URL Syntax

/objects/{pid}/datastreams/{dsID} ? [versionable]

HTTP Method

PUT

HTTP Response

200

Parameters

151/179

Name Description Default Options
{pid} persistent identifier of the digital object
{dsID} datastream identifier
versionable enable versioning of the datastream true true, false
Examples

PUT: /objects/demo:35/datastreams/HIGH?versionable=false

5.2.1.19 Validate
URL Syntax

/objects/{pid}/validate ? [asOfDateTime]

HTTP Method

GET

HTTP Response

200 (OK) if the validation could be carried out (even if the object is not valid)

404 If some object or datastream could not be carried out

401 If the user credentials was insufficient

400 If the parameters are misformed

409 If one of the relevant objects were locked

500 If something else failed on the server

Return Body

XML, adhering to this schema

<xs:schema targetNamespace="http://www.fedora.info/definitions/1/0/access/"
 xmlns="http://www.fedora.info/definitions/1/0/access/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <xs:element name="validation">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="asOfDateTime"/>
 <xs:element ref="contentModels"/>
 <xs:element ref="problems"/>
 <xs:element ref="datastreamProblems"/>
 </xs:sequence>
 <xs:attribute name="pid" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:attribute>

152/179

 <xs:attribute name="valid" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:boolean"/>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="asOfDateTime">
 <xs:simpleType>
 <xs:restriction base="xs:dateTime"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="contentModels">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="model" minOccurs="0" maxOccurs="unbounded" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="problems">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="problem" minOccurs="0" maxOccurs="unbounded" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="datastreamProblems">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="datastream" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="datastream">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="problem" minOccurs="0" maxOccurs="unbounded" type="xs:string"/>

153/179

 </xs:sequence>
 <xs:attribute name="datastreamID" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
</xs:schema>
Parameters

Name Description Default Options
{pid} persistent identifier of the digital object
asOfDateTime indicates that the result should be

relative to the digital object and the
repository as it existed at the given date
and time

 yyyy-MM-dd or yyyy-
MM-ddTHH:mm:ssZ

Examples

GET /objects/validate/demo:29?asOfDateTime=2008-01-01
Returns HTTP 200 with the body

<?xml version="1.0" encoding="UTF-8"?>
<validation pid="demo:29" valid="true">
 <asOfDateTime>2008-01-01T00:00:00.000Z</asOfDateTime>
 <contentModels>
 <model>info:fedora/fedora-system:FedoraObject-3.0</model>
 </contentModels>
 <problems>
 </problems>
 <datastreamProblems>
 </datastreamProblems>
</validation>
GET /objects/validate/demo:fail
Returns HTTP 200 with the body. Here the error was a mispelled element in the DC
datastream, "dc:titel"

<?xml version="1.0" encoding="UTF-8"?>
<validation pid="demo:fail" valid="false">
 <asOfDateTime></asOfDateTime>
 <contentModels>
 <model>info:fedora/fedora-system:FedoraObject-3.0</model>
 </contentModels>

154/179

 <problems>
 </problems>
 <datastreamProblems>
 <datastream datastreamID="DC">

 <problem>Encountered schema validation error while parsing datastream 'DC' with the schema
from content model 'fedora-system:FedoraObject-3.0'. The error was 'cvc-complex-type.2.4.a: Invalid
content was found starting with element 'dc:titel'. One of '{"http://purl.org/dc/elements/1.1/":title,
"http://purl.org/dc/elements/1.1/":creator, "http://purl.org/dc/elements/1.1/":subject,
"http://purl.org/dc/elements/1.1/":description, "http://purl.org/dc/elements/1.1/":publisher,
"http://purl.org/dc/elements/1.1/":contributor, "http://purl.org/dc/elements/1.1/":date, "http://purl.org
/dc/elements/1.1/":type, "http://purl.org/dc/elements/1.1/":format,
"http://purl.org/dc/elements/1.1/":identifier, "http://purl.org/dc/elements/1.1/":source,
"http://purl.org/dc/elements/1.1/":language,
"http://purl.org/dc/elements/1.1/":relation, "http://purl.org/dc/elements/1.1/":coverage,
"http://purl.org/dc/elements/1.1/":rights}' is expected.'</problem>
 </datastream>
 </datastreamProblems>
</validation>

5.3 Utility Methods

5.3.1.1 Upload
URL Syntax

/upload

HTTP Method

POST

HTTP Response

202 and a URI for the uploaded file

Parameters

Multipart file as request content

Examples

POST: /upload (with Multipart file)

155/179

III.VII Technote: Islandora

Namba L.: “BHL-Europe Islandora Reference Documentation”, 2011-04

Composed of excerpts from documentation taken directly from the Islandora website
(https://wiki.duraspace.org/display/ISLANDORA).

156/179

ECP-2008-DILI-518001

BHL-Europe

Technical Note

BHL-Europe Islandora Reference
Documentation

Deliverable number TN-Addendum-Islandora

Dissemination level Public

Delivery date 2011-04

Status Final

Author(s) Lee Namba

eContentplus

This project is funded under the eContentplus programme46,
a multiannual Community programme to make digital content in Europe more accessible, usable and exploitable.

46 OJ L 79, 24.3.2005, p. 1.

157/179

Table of contents

1 DOCUMENT HISTORY.. 158
1.1 CONTRIBUTORS ... 158
1.2 REVISION HISTORY.. 158
1.3 DISTRIBUTION ... 158

2 PURPOSE OF THIS DOCUMENT... 159

3 INSTALLATION AND CONFIGURATION ... 159
3.1 REQUIREMENTS ... 159

3.1.1 Pre-installation software checklist:... 159
3.2 INSTALLATION... 160

3.2.1 Drupal Servlet Filter ... 160
3.2.2 The Islandora Module ... 161

4 USING ISLANDORA ... 162
4.1 ISLANDORA COLLECTION OBJECTS ... 162
4.2 COLLECTION_POLICY... 163
4.3 COLLECTION_VIEW... 165
4.4 CHILD_SECURITY... 173
4.5 QUERY .. 174
4.6 ISLANDORA CONTENT MODELS... 174
4.7 COLLECTION & OBJECT ADMINISTRATION.. 175

5 APPENDIX .. 176
5.1 DRUPAL... 176
5.2 FEDORA ... 177

158/179

1 Document History

1.1 Contributors
This document is a reference document and is composed of excerpts from documentation
taken directly from the Islandora website (https://wiki.duraspace.org/display/ISLANDORA).

Person Partner

Lee Namba ATOS

1.2 Revision History

Revision Date Author Version Change Reference & Summary

2011-04 Lee Namba 0.1 1. Draft

2011-05-03 Chris Sleep Final Dissemination changed to public for D3.7

1.3 Distribution
This document has been distributed to:

Group Date of issue Version

159/179

2 Purpose of this document
Islandora is an open-source framework developed by the University of Prince Edward Island's
Robertson Library.

Islandora uniquely combines and harnesses the power of the Drupal content management
system and the Fedora Digital Repository software to create a robust digital asset
management system that can be fitted to meet the short and long-term collaborative
requirements of digital data stewardship.

This document is a reference document and is composed of excerpts from documentation
taken directly from the Islandora website (https://wiki.duraspace.org/display/ISLANDORA).
We have edited the relevant text as is applies to the BHL-Europe system.

It aims to aggregate the essential Islandora documentation for developers and maintainers of
the BHL-Europe system.

3 Installation and Configuration

3.1 Requirements
To successfully install Islandora, a site administrator should ideally have experience with
configuring and trouble-shooting issues on a UNIX-based web server and with using UNIX
command-line functions.

In addition, a site administrator should have or obtain a basic understanding of the following:

 Drupal (www.drupal.org)
 Fedora Repository (http://www.fedora-commons.org)
 Foxml 1.1 (http://www.fedora-

commons.org/documentation/3.0b2/userdocs/digitalobjects/introFOXML.html)

3.1.1 Pre-installation software checklist:
The Islandora framework relies upon a number of other open-source applications. Before
beginning the installation of any Islandora modules, ensure:

1. You have Drupal installed and properly configured with:

 Clean URLs enabled in Drupal
 The Drupal file system set to public

2. You have Fedora installed and properly configured:

 Ensure you can use the admin tools in Fedora to ingest and purge.
 A requirement for collection objects: To make the module more flexible and useful we

have also made some specific decisions regarding our Fedora objects. For the module
to be able to browse collections, your collection objects must have a hasModel entry
in the RELS-EXT datastream that points to islandora:collectionCModel. This lets the
module know that the object represents a collection and it will then query for objects
that are members of this collection.

3. Other requirements beyond what is needed by Fedora and Drupal include:

160/179

 PHP5-curl
 PHP5-soap
 PHP5-xsl

It is advisable to review the help documentation if you are unfamiliar with these applications.

At the end of this installation, you will be ready to populate your site with digital assets and
be capable of accepting Solution Packs.

3.2 Installation

3.2.1 Drupal Servlet Filter
The Drupal Servlet Filter allows the Fedora Repository to use Drupal’s database for
authentication and retrieving user roles.

3.2.1.1 Installation Steps
1. Download the latest version of the Drupal Servlet Filter from the Islandora github
distribution site (https://github.com/Islandora/Islandora-dist/) and place it in

$FEDORA_HOME/tomcat/webapps/fedora/WEB-INF/lib

Ensure you choose the correct jar file for i) your version of Fedora, and ii) your authentication

type (FeSL or legacy).

Note: If your Drupal and Fedora installations use different database types, Fedora will require
the Drupal database driver's jar file in this directory as well. For instance, if Fedora uses
postgres and Drupal uses MySQL, Fedora will require the MySQL jar file for the Drupal
Servlet Filter in order to connect to the Drupal database.

2. Make the Fedora Repository aware of the new filter by following the instructions for

Legacy Authentication:

3.2.1.1.1 Legacy Authentication
new xml elements must be added in order to configure Fedora's servlet filtering.

Edit the web.xml file located in $FEDORA_HOME/tomcat/webapps/fedora/WEB-INF/ to
include a reference to the Drupal Servlet Filter. Immediately after the <filter> element named
XmlUserfileFilter, insert the following:

<filter>
 <filter-name>DrupalFilter</filter-name>
 <filter-class>ca.upei.roblib.fedora.servletfilter.FilterDrupal</filter-class>
</filter>
Then, immediately after the <filter-mapping> element named XmlUserfileFilter, insert the
following:

<filter-mapping>
 <filter-name>DrupalFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

161/179

3.2.1.1.2
3. Enable the Drupal Servlet Filter by creating the file filter-drupal.xml in
$FEDORA_HOME/server/config. Copy the following text as a template, then modify the
attributes of the <connection> tag to match the server, port, database name, username and
password of your site's Drupal database. Note: Fedora requires a separate <connection> entry
for each connecting Drupal site.

<?xml version="1.0" encoding="UTF-8"?>
<!--File to hold drupal connection info for the FilterDrupal servlet filter. For multisite drupal installs you
can include multiple connection elements. We will query all the databases and assume any user in
any drupal db with the same username and password are the same user. We will gather all roles for
that user from all databases. This is a potential security risk if a user in one drupal db has the same
username and password as another user in a separate drupaldb. We are also assuming all drupal
dbs to be mysql. This file should be located in the same directory as the fedora.cfcg file-->

<FilterDrupal_Connection>
 <connection server="localhost" dbname="drupaldb" user="dbuser" password="password"
port="3306">
 <sql>
 <!--Different sql statement for each connection. This is for drupal multisites that are setup
using one database with table prefixes. We don't do this but some people might.-->
 SELECT DISTINCT u.uid AS userid, u.name AS Name, u.pass AS Pass, r.name AS Role
FROM (users u LEFT JOIN users_roles ON u.uid=users_roles.uid) LEFT JOIN role r ON
r.rid=users_roles.rid WHERE u.name=? AND u.pass=?;
 </sql>
 </connection>
</FilterDrupal_Connection>

4. Stop and restart Fedora to enable the Drupal Servlet Filter.

5. Test the Drupal Servlet Filter by accessing your Fedora Admin client using your Drupal
login credentials.

3.2.2 The Islandora Module
The Islandora module is a Drupal module written to allow the Drupal content management
system to act as a front end to a Fedora Digital Repository. The module enables viewing and
management of Fedora objects. This includes ingest, purge, add data stream, searching and
browsing by collection. This version of the module does not store any data regarding any of
the Fedora Objects in the Drupal database. The only data stored in Drupal is the configuration
data telling Drupal how to connect to Fedora.

Future versions of the module may store metadata and/or links to datastreams regarding the
Fedora object in the Drupal database. This would enable a Fedora-linked node to be used in
the standard Drupal ways, but would also lead to the duplication of data and the problem of

162/179

keeping Drupal and Fedora in sync. The Islandora team is interested in ideas on how to make
this work most efficiently.

To install the Islandora Module:

1. Download the latest version of the module from http://www.github.com/islandora and
place the uncompressed contents of the module in your sites/all/modules or the
sites/default/modules directory. For multi-site Drupal environments, refer to the
Drupal.org instructions.

2. Enable the module by logging in to Drupal and navigating to Administration >
Modules. Locate the module entitled Fedora Repository from the list of modules and
enable the Digital Repository component of the module. Note: If there are missing
dependent modules, ensure you have installed and enabled these to properly utilize
Islandora.

You have now enabled the Islandora module. Navigate to your newly created Digital
Repository menu item to view the objects from your Fedora Repository through your web
site.

If no objects are found in your Digital Repository, you can quickly populate Fedora with
some demo objects. To do this, go to Administer > Site Configuration > Fedora Collection
List. Check the default information that populates the collection list form fields and your
connection to the Fedora database. Then, select the Solution Packs tabs at the top of your
page.

If you encounter problems with your Islandora configuration, check the following:

1. Your Fedora connection information is correct: The Fedora RISearch URL will, by
default, specify localhost for your Fedora server name. If you are not using localhost,
ensure you have entered your Fedora server's IP or domain name.

2. You have the appropriate user permissions to determine who can do what to Fedora
objects from within Drupal. (need a bit more info on this)

3. The Fedora Default Display Object PID and Fedora Datastream ID are the defaults
used by Drupal when it can't find a PID/datastream. Ensure these point to an
object/datastream that is known to exist in your Fedora repository. Usually this will be

an image indicating object not found or image not available. PID namespaces allowed

in this Drupal install is a space-separated enumeration. Only Fedora objects identified
by the members of this enumeration will be visible to users of this site. Similar to the
retain PID namespaces in the older versions of Fedora config file.

4 Using Islandora

4.1 Islandora Collection Objects
An Islandora Collection Object is a Fedora object with several required datastreams. A
familiarity of Fedora’s object model is therefore essential to properly understanding the
concepts underlying the creation and manipulation of collection objects in Islandora. The
following documents offer a grounding in Fedora’s Digital Object Model and Content Model
Architecture:

163/179

 Fedora Digital Object Model:
https://wiki.duraspace.org/display/FCR30/Fedora+Digital+Object+Model

 Tutorial 2: Creating Fedora Objects Using the Fedora Content Model Architecture:
http://www.fedora-commons.org/documentation/3.0b1/userdocs/tutorials/tutorial2.pdf

In Islandora, collection objects must have a hasModel relationship to the
islandora:collectionCModel and they must have a COLLECTION_POLICY datastream. This
relationship tells Islandora that this Fedora object is a collection object. Islandora can then
query the resource index for objects that have a relationship of isMemberOfCollection to this
collection object.

The isMemberOfCollection is the default relationship used by Islandora, you can use others
by specifying the relationship element in the collection policy xml. You would then have to
store a QUERY datastream in the collection object.

The Collection Object defines four datastreams:

COLLECTION_POLICY
COLLECTION_VIEW
CHILD_SECURITY
QUERY

4.2 COLLECTION_POLICY
A Collection policy is an XML data-stream in a Fedora object with a DSID of
COLLECTION_POLICY. The collection policy defines what content models may be
ingested and related to this collection object. An example of a COLLECTION_POLICY may
look something like this:

<collection_policy xmlns="http://www.islandora.ca"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
name="" xsi:schemaLocation="http://www.islandora.ca http://
syn.lib.umanitoba.ca/collection_policy.xsd">
<content_models>
<content_model dsid="ISLANDORACM" name="REFWORKS"
namespace="ir:ref" pid="islandora:refworksCModel"></
content_model>
<content_model dsid="STANDARD_PDF"
name="STANDARD_PDF" namespace="vre:ref"
pid="vre:contentmodel"></content_model> <content_model
dsid="ISLANDORACM" name="Collection"
namespace="islandora:collection"
pid="islandora:collectionCModel"></content_model>
</content_models>
<search_terms>
<term field="dc.title">dc.title</term>
<term field="dc.creator">dc.creator</term>
<term default="true" field="dc.description">dc.description</

164/179

term>
<term field="dc.date">dc.date</term>
<term field="dc.identifier">dc.identifier</term>
<term field="dc.language">dc.language</term>
<term field="dc.publisher">dc.publisher</term>
<term field="dc.rights">dc.rights</term>
<term field="dc.subject">dc.subject</term>
<term field="dc.relation">dc.relation</term>
<term field="dcterms.temporal">dcterms.temporal</term>
<term field="dcterms.spatial">dcterms.spatial</term>
<term field="fgs.DS.first.text">Full Text</term>
</search_terms>
40
<relationship></relationship>
</collection_policy>
The Collection Policy above would allow either of twotypes of objects to be ingested -
STANDARD_PDF and REFWORKS. How these are ingested and viewed is determined in
the actual CONTENT_MODEL data stream.

Required for Ingest: The Islandora module requires a collection object to have a
COLLECTION_POLICY datastream if additional objects are to be ingested as members of
that collection object.

Adding a Collection Policy to a Collection Object

As described earlier, a Collection Policy is a data-stream (COLLECTION_POLICY) in a
Collection or Parent-type Object that declares what other objects this object is allowed to be
related to on ingest. It can optionally specify the relationship to use. If there is no relationship
element, the default relationship will be isMemberOfCollection. Below is a snippet of the
COLLECTION_POLICY stream that was added to the demo:SmileyStuff object:

<contentmodels>
<contentmodel name="STANDARD_JPEG">
<pid_namespace>demo:Smiley</pid_namespace>
<pid>demo:DualResImage</pid>
<dsid>ISLANDORACM</dsid>
</contentmodel>
</contentmodels>
41
<relationship>fedora:isMemberOf</relationship><!-- the demo
Smiley Stuff QUERY stream queries for isMemberOf
so we will use that relationship on ingest-->
Creating a COLLECTION_POLICY stream is similar to creating an ISLANDORACM
stream in that you will have to create the XML by hand. It is probably best to start with an

165/179

example collection policy, edit the example and save it as a different name. You can use the
Fedora Admin client to add the COLLECTION_POLICY stream or use Islandora itself by
browsing to the Collection object, expanding the detailed list of content and adding the data-
stream. The main requirement is that the data-stream have a dsid of
COLLECTION_POLICY.

You can review the COLLECTION_POLICY datastreams in the collection objects that ship
with Islandora.

Some additional examples that are available online:

Fraction COLLECTION_POLICY
https://wiki.duraspace.org/download/attachments/11502608/fractions_COLLECTION_POLI
CY.xml

Standard PDF COLLECTION_POLICY
https://wiki.duraspace.org/download/attachments/11502608/PDF-
COLLECTION+POLICY.xml

4.3 COLLECTION_VIEW
The collection object's optional COLLECTION_VIEW data stream holds an XSLT to define
how objects in that collection are displayed. Here is an example of a
COLLECTION_VIEW:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/
Transform" xmlns:s="http://www.w3.org/2001/sw/DataAccess/rf1/
result" version="1.0">
<!-- Red and White XSLT -->
<xsl:variable name="BASEURL">
<xsl:value-of select="$baseUrl"/>
</xsl:variable>
<xsl:variable name="PATH">
<xsl:value-of select="$path"/>
</xsl:variable>
<xsl:variable name="thisPid" select="$collectionPid"/>
<xsl:variable name="thisTitle" select="$collectionTitle"/>
<xsl:variable name="size" select="20"/>
<xsl:variable name="page" select="$hitPage"/>
<xsl:variable name="start" select="((number($page) - 1) *
number($size)) + 1"/>
<xsl:variable name="end" select="($start - 1) + number($size)"/>
<xsl:variable name="cellsPerRow" select="4"/>
<xsl:variable name="count" select="count(s:sparql/s:results/
s:result)"/>
<xsl:template match="/">

166/179

<xsl:if test="$count>0">
<table cellpadding="3" cellspacing="3" width="90%">
<tr><td colspan="{$cellsPerRow}">
<div STYLE="text-align: center;">
<xsl:choose>
<xsl:when test="$end >= $count and $start = 1">
<xsl:value-of select="$start"/>-<xsl:value-of select="$count"/>
of <xsl:value-of select="$count"/>

</xsl:when>
<xsl:when test="$end >= $count">
<xsl:value-of select="$start"/>-<xsl:value-of select="$count"/>
of <xsl:value-of select="$count"/>

<a>
<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/
>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof
select="$thisTitle"/>/<xsl:value-of select="$page - 1"/>
</xsl:attribute>
<<Prev

</xsl:when>
<xsl:when test="$start = 1">
<xsl:value-of select="$start"/>-<xsl:value-of select="$end"/>
of <xsl:value-of select="$count"/>

<a>
<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/
>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof
select="$thisTitle"/>/<xsl:value-of select="$page + 1"/>
</xsl:attribute>
Next>>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$start"/>-<xsl:value-of select="$end"/>
of <xsl:value-of select="$count"/>

<a>
<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/
>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof
select="$thisTitle"/>/<xsl:value-of select="$page - 1"/>

167/179

</xsl:attribute>
<<Prev

<a>
<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/
>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof
select="$thisTitle"/>/<xsl:value-of select="$page + 1"/>
</xsl:attribute>
Next>>

</xsl:otherwise>
</xsl:choose>
</div> <br clear="all" />
</td></tr>
<!--<xsl:for-each select="/sparql/results/result[position()>=$start
and position() <=$end]">
<xsl:variable name='OBJECTURI' select="object/@uri"/>
<xsl:variable name='PID' select="substring-after
($OBJECTURI,'/')"/>
<tr>
<td>

<xsl:attribute name="src"><xsl:value-of select="$BASEURL"/
>/fedora/repository/<xsl:value-of select="$PID"/>/TN
</xsl:attribute>

<a>
<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/
>/fedora/repository/<xsl:copy-of select="$PID"/>/-/<xsl:value-of
select="title"/>
</xsl:attribute>
<xsl:value-of select="title"/>

</td>
</tr>
</xsl:for-each>-
-->
<xsl:apply-templates select="s:sparql/s:results"/>

168/179

</table><br clear="all" />
<div STYLE="text-align: center;">
<xsl:choose>
<xsl:when test="$end >= $count and $start = 1">
<xsl:value-of select="$start"/>-<xsl:value-of select="$count"/>
of <xsl:value-of select="$count"/>

</xsl:when>
<xsl:when test="$end >= $count">
<xsl:value-of select="$start"/>-<xsl:value-of select="$count"/>
of <xsl:value-of select="$count"/>

<a>
<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/
>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof
select="$thisTitle"/>/<xsl:value-of select="$page - 1"/>
</xsl:attribute>
<<Prev

</xsl:when>
<xsl:when test="$start = 1">
<xsl:value-of select="$start"/>-<xsl:value-of select="$end"/>
of <xsl:value-of select="$count"/>

<a>
<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/
>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof
select="$thisTitle"/>/<xsl:value-of select="$page + 1"/>
</xsl:attribute>
Next>>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$start"/>-<xsl:value-of select="$end"/>
of <xsl:value-of select="$count"/>

<a>
<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/
>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof
select="$thisTitle"/>/<xsl:value-of select="$page - 1"/>
</xsl:attribute>
<<Prev

169/179

<a>
<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/
>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof
select="$thisTitle"/>/<xsl:value-of select="$page + 1"/>
</xsl:attribute>
Next>>

</xsl:otherwise>
</xsl:choose>
</div>
</xsl:if>
</xsl:template>
<xsl:template match="s:sparql/s:results">
<xsl:for-each select="s:result[position() mod $cellsPerRow = 1
and position()>=$start and position() <=$end]">
<tr>
<xsl:apply-templates select=". | following-sibling::s:result
[position() < $cellsPerRow]"/>
</tr>
</xsl:for-each>
</xsl:template>
<xsl:template match="s:result">
<xsl:variable name='OBJECTURI' select="s:object/@uri"/>
<xsl:variable name='CONTENTURI' select="s:content/@uri"/>
<xsl:variable name='CONTENTMODEL' select="substring-after
($CONTENTURI,'/')"/>
<xsl:variable name='PID' select="substring-after
($OBJECTURI,'/')"/>
<xsl:variable name="newTitle" >
<xsl:call-template name="replace-string">
<xsl:with-param name="text" select="s:title"/>
<xsl:with-param name="from" select="'_'"/>
<xsl:with-param name="to" select="' '"/>
</xsl:call-template>
</xsl:variable>
<xsl:variable name="linkUrl">
<xsl:choose>

170/179

<xsl:when
test="($CONTENTMODEL='islandora:collection')">
<xsl:value-of select="$BASEURL"/>/fedora/repository/
<xsl:copy-of select="$PID"/>/-/<xsl:value-of select="s:title"/>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$BASEURL"/>/fedora/repository/
<xsl:copy-of select="$PID"/>/OBJ/<xsl:value-of select="s:title"/>
</xsl:otherwise>
</xsl:choose>
<xsl:value-of select="s:content"/>
</xsl:variable>
<td valign="top" width="25%">
<a>
<xsl:attribute name="href"><xsl:value-of select="$linkUrl"/>
</xsl:attribute>

<xsl:attribute name="src"><xsl:value-of select="$BASEURL"/>/
fedora/repository/<xsl:value-of select="$PID"/>/TN
</xsl:attribute>
<xsl:attribute name="alt"><xsl:value-of select="$newTitle"/>
</xsl:attribute>
 <br clear="all" />
<a>
<xsl:attribute name="href"><xsl:value-of select="$linkUrl"/>
</xsl:attribute>
<xsl:value-of select="$newTitle"/>

<xsl:if test="($CONTENTMODEL!
='islandora:collectionCModel')">

--<a>
<xsl:attribute name="href">
<xsl:value-of select="$BASEURL"/>/fedora/repository/
<xsl:copy-of select="$PID"/>/-/<xsl:value-of select="s:title"/>
</xsl:attribute>
DETAILS
--
</xsl:if>

171/179

</td>
<xsl:if test="(position() = last()) and (position() <
$cellsPerRow)">
<xsl:call-template name="FillerCells">
<xsl:with-param name="cellCount" select="$cellsPerRow -
position()"/>
</xsl:call-template>
</xsl:if>
</xsl:template>
<xsl:template name="FillerCells">
<xsl:param name="cellCount"/>
<td> </td>
<xsl:if test="$cellCount > 1">
<xsl:call-template name="FillerCells">
<xsl:with-param name="cellCount" select="$cellCount - 1"/>
</xsl:call-template>
</xsl:if>
</xsl:template>
<xsl:template name="replace-string">
<xsl:param name="text"/>
<xsl:param name="from"/>
<xsl:param name="to"/>
<xsl:choose>
<xsl:when test="contains($text, $from)">
<xsl:variable name="before" select="substring-before($text,
$from)"/>
<xsl:variable name="after" select="substring-after($text,
$from)"/>
<xsl:variable name="prefix" select="concat($before, $to)"/>
<xsl:value-of select="$before"/>
<xsl:value-of select="$to"/>
<xsl:call-template name="replace-string">
<xsl:with-param name="text" select="$after"/>
<xsl:with-param name="from" select="$from"/>
<xsl:with-param name="to" select="$to"/>
</xsl:call-template>
</xsl:when>
<xsl:otherwise>

172/179

<xsl:value-of select="$text"/>
</xsl:otherwise>
</xsl:choose>
</xsl:template>
</xsl:stylesheet>

The Drupal Fedora module asks for the query to return SPARQL XML. So, a query like:

select $object $title $content from <#ri>
where $object <fedora-model:label> $title
and $object <fedora-model:hasModel> $content
and $object <fedora-rels-ext:isMemberOfCollection>
<info:fedora/demo:pid>
and $object <fedora-model:state> <info:fedora/fedora-system:def/
model#Active> order by $title
Would return results like:

<sparql xmlns="http://www.w3.org/2001/sw/DataAccess/rf1/
result">
<head>
<variable name="object"/>
<variable name="title"/>
<variable name="content"/>
</head>
<results>
<result>
<object uri="info:fedora/vre:ref-coll-188"/>
<title>A Test Collection</title>
<content uri="info:fedora/fedora-system:FedoraObject-3.0"/>
</result>
<result>
<object uri="info:fedora/vre:ref-coll-188"/>
<title>A Test Collection</title>
<content uri="info:fedora/islandora:collection"/>
</result>
<result>
<object uri="info:fedora/test:mark-library-1009"/>
<title>Building a Library 2.0 Tapestry</title>
<content uri="info:fedora/fedora-system:FedoraObject-3.0"/>
</result>

173/179

<result>
<object uri="info:fedora/test:mark-library-109"/>
<title>Building a Library 2.0 Tapestry</title>
<content uri="info:fedora/fedora-system:FedoraObject-3.0"/>
</result>
<result>
<object uri="info:fedora/test:mark-library-141"/>
<title>Coping With Change: Sys/Admin</title>
<content uri="info:fedora/fedora-system:FedoraObject-3.0"/>
</result>
</sparql>
You would use the XSLT as described above to transform the SPARQL XML to HTML.
XSLT has to be matched to the Query. If you define a QUERY datastream your XSLT must
be written to transform the results of that query.

4.4 CHILD_SECURITY
All objects in the collection will inherit the policies detailed in the collection object’s
CHILD_SECURITY datastream. This gives us security at the collection level.

All objects in that collection will have the same POLICY stream. If there is no
CHILD_SECURITY stream at the collection level there will be no POLICY stream at the
object level and, as such, Drupal permissions and global XACML policies will define the
users with permission to modify this object.

Adding a Child Security Policy to a Collection Object

To enable Islandora to use XACML policies you will need to add a data-stream with a dsid of
CHILD_SECURITY to any object that will act as a collection type object.

Creating and adding this stream is similar to the COLLECTION_POLICY and
ISLANDORACM streams above. They will have to be created/modified by hand in a XML
editor. Currently, the only way to add these streams is via Islandora’s add stream form or the
Fedora Admin client. As an example, to add security for the demo:SmileyStuff collection you
would add an XACML stream with a dsid of CHILD_SECURITY to the demo:SmileyStuff
object. This stream will then be added to all objects ingested into this collection as its
POLICY stream. Caution: Be careful with POLICY streams as all access to an object can be
lost if an object has an invalid POLICY stream.

We are also parsing the CHILD_SECURITY stream of the collection object to determine
what users/roles can ingest at this level. This means that for now the XACML policies will
have to be parse-able by our simple parser. Eventually, Islandora may include a callout
determined by the Collection Policy to decide who can ingest in this collection.

Islandora XACML policies start out by denying access and then providing exceptions for
users with certain roles or user ids. The file is parsed, looking for these roles/ids. If the user
has any, they are allowed to ingest in the collection. An example XACML policy can be
found on the DuraSpace Wiki1. This policy will allow all users to view but only the
administrator role and fedoraAdmin user can modify. This could be the starting point of other
policies and by adding users and roles determine who can modify the objects. A second

174/179

example2 provides an another starting point where all user access is blocked to all actions
except to the users and roles listed.

Depending on your global XACML policies you may have to add a policy file to the
$FEDORA_HOME/data/ fedora-xacml-policies/repository-policies that will allow users who
do not have the administrator role to ingest objects. This is only if you want non-administrator
users to be able to manage objects. An example XACML policy3 that allows this available,
but it opens API-M to all authenticated users.

If you have an XACML policy in every object that limits API-M this may be ok but you will
probably want to modify this global policy to only allow certain roles to access API-M. By
combining Drupal permissions and the Fedora XACML policies we hope to be able to keep
the XACML relatively simple.

4.5 QUERY
A Collection object may have a QUERY datastream. If the object has a data-stream with a
dsid of QUERY the Islandora module will attempt to use that query to get a list of objects
related to that collection object. If there is no QUERY data-stream the module will try the
generic one shown earlier in this document. Custom query/XSLT combinations should be
written to expect SPARQL as the result. Here is a sample QUERY data-stream (would be
uploaded with a text/plain mime-type):

select $object $title from <#ri>
where $object <dc:title> $title
and ($object <fedora-model:hasModel> <info:fedora/
islandora:mapCModel> or $object <fedora-model:hasModel>
<info:fedora/islandora:collectionCModel>)
and $object <fedora-rels-ext:isMemberOfCollection>
<info:fedora/imagined:collection>
and $object <fedora-model:state> <info:fedora/fedora-system:def/
model#Active>
order by $title

4.6 Islandora Content Models
Islandora uses Content Models to determine which mime-types can be ingested and how the
object will be managed on ingest. This extends the Fedora Content Model Architecture
(CMA).

Content models allow the definition of a custom data entry form to be displayed by the
module for that object type. This allows differing data entry forms for differing object types.

The <display_in_fieldset> element determines how the object is displayed when a user
accesses the object view.

The <ingest_rules> element defines how objects identified by specific dsid's are managed. For
instance, a PDF content model may tell the module to create a thumbnail and ingest that
thumbnail as an additional data-stream along with the actual PDF data-stream.

Islandora content models are stored as XML datastreams in a Fedora Content Model object
with a datastream id (DSID) of ISLANDORACM. The collection policy data-stream, with a

175/179

DSID of COLLECTION_POLICY, references one or more content models defining what
types of objects can be ingested in a particular collection. The Make Demo Smiley Stuff
Islandora Aware4 page has some examples of Collection Policies and Content Models.
Additional sample content models are linked below in the “Creating an Islandora
Content Model” section.

In the Islandora content models we provide hooks that can be called at appropriate times, such
as add datastream, edit metadata, ingest etc. The functions that are called by these hooks
could then read more XML from the content model, for instance defining a data entry form.
By using Islandora Content models you can make Islandora use the code that you provide.
You can drop your php code into the modules directory (for example, under the plugins
directory within the module) and then using the XML above you would be able to call your
custom code or a combination of existing and custom code. Of course, you would require
write access to the directory in order to copy your code.

4.7 Collection & Object Administration
If you have the appropriate Drupal permissions you will be able to ingest, purge and add data-
streams. In Drupal your permissions are determined by the roles of the user you are logged in
as. These permissions can be limited further by XACML policies. For instance, if you have a
Drupal role that says you are allowed to add datastreams, you will be allowed to add data-
streams to all objects except objects that have a XACML policy that denies it. View can also
be blocked at the Fedora level using a XACML policy.

To manage objects in Fedora you browse to the object and, assuming the permissions allow,
you can add/purge a data-stream, edit the metadata, or purge the object. Currently, you must
edit raw XML to edit collection policies, content models and collection views. As an
example, in order to change a collection view you would browse to the collection object,
download the COLLECTION_VIEW stream, modify the XML, and then add the modified
file back as a data-stream by clicking on the 'modify datastream' icon at the right of the
datastream entry in the 'detailed list of content' section of an object's display page. There are
some sample XML files shipped as part of the module. These files include Islandora Content
Model (ISLANDORACM), Collection View (COLLECTION_VIEW), and Collection Policy
(COLLECTION_POLICY) example files.

The simplest way to create an Islandora Content Model is to use the Islandora Content
Modeler Module. The operation of this module is fully documented later in this guide.

Sample ISLANDORACM data-streams can be viewed in the objects that ship with the demo
collections and others are available online.

Chemical Compound Content Model:
https://wiki.duraspace.org/download/attachments/11502608/compoundcm.xml

Specimen Content Model:
https://wiki.duraspace.org/download/attachments/11502608/specimencm.xml

176/179

5 Appendix

5.1 Drupal
Drupal is an open source content management platform powering millions of websites and
applications. It’s built, used, and supported by an active and diverse community of people
around the world.

Pre-installation software checklist:
Drupal requires the following to be set-up and running prior to beginning your installation:

 Apache web server
 MySQL database are recommended.
 PHP 4 (4.3.5 or greater) or PHP 5 (http://www.php.net/)

*Installation Steps: *These are the quick “get-up-and-running” installation steps for Drupal. A

more comprehensive installation guide is available from
http://drupal.org/documentation/install

1. Obtain the latest Drupal release from http://drupal.org/ and extract the contents of the

compressed file.Note: Islandora is currently only compatible with Drupal 6.x.

2. Move the contents of the drupal-x.x directory into a directory within your web server's
document root or public HTML directory (ensure that the .htaccess file, a hidden file, is
successfully moved into the destination directory as well).

mv drupal-x.x/* drupal-x.x/.htaccess /var/www/html
3. Make a copy of the default.settings.php file in the sites/default directory and name the copy
settings.php.

cp sites/default/default.settings.php sites/default/settings.php
4. Give the web server “write privileges” to sites/default/settings.php and the sites/default/
directory:

chmod o+w sites/default/settings.php
chmod o+w sites/defaul
5. Create a database for Drupal. Make note of your username and password as you will need it
when the Drupal install script runs.

mysqladmin \-u <mysqlusername> \-p create <databasename>
mysql \-u <mysqlusername> \-p
enter your password
grant all on <databasename>.* to <db_user_name>@<server> identified by '<password>';
flush privileges;
6. Run the install script by pointing your browser to the base URL of your website (e.g.,

http://www.example.com).

7. Work through the on-screen steps to complete the Drupal site installation.

8. When the install script succeeds, you will be directed to the "Welcome" page, and you will

be logged in as the administrator.

177/179

9. Proceed with the initial configuration steps suggested on the "Welcome" page.

For a good introduction to Drupal and to learn how to harness it’s power and potential to
create a site that meets your needs, access Drupal’s extensive online documentation at
http://drupal.org/documentation . An additional source of information is also Drupal’s active
open-source community, which can be accessed at http://drupal.org/community .

5.2 Fedora
Fedora or Flexible Extensible Digital Object Repository Architecture is a modular digital
asset management (DAM) architecture that supports a variety of digital content needs. It was
originally developed by researchers at Cornell University as an architecture for storing,
managing, and accessing digital content in the form of digital objects. Fedora defines a set of
abstractions for expressing digital objects, asserting relationships among digital objects, and
linking "behaviors" (i.e., services) to digital objects. (ref: http://www.fedora-
commons.org/about)

Fedora is available under the terms of the Apache License and has a very active open-source
community producing additional tools, applications and utilities. At the time of this writing,
Fedora 3.4.2 was the version available for download.

Pre-installation software checklist:
Fedora requires the following to be set-up and running prior to beginning your installation:

 Java SE Development Kit (JDK) 6: Available from http://java.sun.com/
 A database: Installed for Drupal. Consult the Fedora installation guide for notes on

running other databases.
 An application server: Fedora includes the Tomcat Application Server. Consult the

Fedora installation guide for notes on running other application servers.
Installation Steps:

1. Download the Fedora Repository software from

https://wiki.duraspace.org/display/FCR30/Installation+and+Configuration+Guide

2. Read through the online guide to ensure the pre-installation system pre-requisites are met.

3. Preparing your local environment variables by modifying the .bash_profile or .profile file
in the home directory of the fedora user.
The following example assumes Java is installed in /opt/java and Fedora is installed in

/usr/local/fedora:

PATH=/opt/java/bin:$PATH:$HOME/bin

export FEDORA_HOME=/usr/local/fedora

export CATALINA_HOME=/usr/local/fedora/tomcat

178/179

export JAVA_OPTS="-Xms1024m \-Xmx1024m \-XX:MaxPermSize=128m \-
Djavax.net.ssl.trustStore=/usr/local/fedora/server/truststore \-
Djavax.net.ssl.trustStorePassword=tomcat"

export JAVA_HOME=/opt/java
4. Before beginning your Fedora installation, create a database for Fedora to use (In the
install.properties file example that follows the database is called fedora3. This is referenced as

part of the value string for database.jdbcURL).

5. To start the installer, navigate to the directory where the install file was downloaded and

run the following a command:

java \-jar fcrepo-installer-3.4.2.jar
6. Select the CUSTOM INSTALL.

Note: It is important to select the Custom Install as it will enable the resource index by

default, which is the backbone of Islandora's collection views and other functionality.

7. The Fedora installer script will ask you a series of questions. Once the script had collected
your answers and configured Fedora on your system, the values are written to the
install.properties file located in $FEDORA_HOME/install.

An output of a sample install.properties file is included here to guide you through the

installation.

 An example of an install.properties file:

\#Install Options
\#Mon Dec 13 11:52:24 PST 2010
keystore.file=included
ri.enabled=true
messaging.enabled=true
apia.auth.required=false
database.jdbcDriverClass=com.mysql.jdbc.Driver
tomcat.ssl.port=8443
ssl.available=true
database.jdbcURL=jdbc\:mysql\://localhost/fedora3?useUnicode\=true&characterEncoding\=UTF-
8&autoReconnect\=true
messaging.uri=vm\:(broker\:(tcp\://localhost\:61616))
database.password=password
database.mysql.driver=included
database.username=fedoraUser
fesl.authz.enabled=false
tomcat.shutdown.port=8005
deploy.local.services=true

179/179

xacml.enabled=true
database.mysql.jdbcDriverClass=com.mysql.jdbc.Driver
tomcat.http.port=8080
fedora.serverHost=localhost
database=mysql
database.driver=included
fedora.serverContext=fedora
llstore.type=akubra-fs
tomcat.home=/usr/local/fedora/tomcat
fesl.authn.enabled=false
database.mysql.jdbcURL=jdbc:mysql://localhost:8889fedora34useUnicode=true&characterEncod
ing=UTF-8&autoReconnect=true
fedora.home=/usr/local/fedora
install.type=custom
servlet.engine=included
apim.ssl.required=false
fedora.admin.pass=fedoraAdmin
apia.ssl.required=false
8. Once the installation script has completed and Fedora is installed, you should start your

Fedora instance by running:

$FEDORA_HOME/tomcat/bin/startup.sh
9. To verify that Fedora has successfully started:

 a. $FEDORA_HOME/tomcat/logs/catalina.out should contain no errors.
 b. View your Fedora instance through a web browser: http://localhost:8080/fedora/

10. Access the Fedora Web Administrator: http://localhost:8080/fedora/admin and ensure you
can ingest and purge objects.

11. For information on using Fedora, make use of the tutorials found at:
https://wiki.duraspace.org/display/FR22DOC/Fedora+Tutorials

